
Package: funcharts (via r-universe)
October 12, 2024

Type Package

Title Functional Control Charts

Version 1.5.0

Description Provides functional control charts for statistical process
monitoring of functional data, using the methods of Capezza et
al. (2020) <doi:10.1002/asmb.2507>, Centofanti et al. (2021)
<doi:10.1080/00401706.2020.1753581>, and Capezza et al. (2024)
<doi:10.1080/00401706.2024.2327346>. The package is thoroughly
illustrated in the paper of Capezza et al (2023)
<doi:10.1080/00224065.2023.2219012>.

Depends R (>= 3.6.0), robustbase

Imports fda, ggplot2, rlang, parallel, tidyr, patchwork, RSpectra,
matrixStats, roahd, dplyr, stringr, fda.usc, rrcov, rofanova,
Matrix, MASS, mvtnorm, Rcpp, Rfast

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Suggests covr, knitr, rmarkdown, testthat

VignetteBuilder knitr

URL https://github.com/unina-sfere/funcharts

BugReports https://github.com/unina-sfere/funcharts/issues

Roxygen list(markdown = TRUE)

LinkingTo Rcpp, RcppArmadillo

Repository https://unina-sfere.r-universe.dev

RemoteUrl https://github.com/unina-sfere/funcharts

RemoteRef HEAD

RemoteSha 43b2c3857f5c93bf03fadd2fa73ac576870e212f

1

https://doi.org/10.1002/asmb.2507
https://doi.org/10.1080/00401706.2020.1753581
https://doi.org/10.1080/00401706.2024.2327346
https://doi.org/10.1080/00224065.2023.2219012
https://github.com/unina-sfere/funcharts
https://github.com/unina-sfere/funcharts/issues

2 Contents

Contents
air . 3
AMFEWMA_PhaseI . 4
AMFEWMA_PhaseII . 7
cbind_mfd . 9
control_charts_pca . 10
control_charts_pca_mfd_real_time . 12
control_charts_sof_pc . 14
control_charts_sof_pc_real_time . 17
cont_plot . 19
data_sim_mfd . 20
fof_pc . 21
fof_pc_real_time . 23
functional_filter . 25
get_mfd_array . 26
get_mfd_array_real_time . 28
get_mfd_df . 29
get_mfd_df_real_time . 31
get_mfd_fd . 33
get_mfd_list . 34
get_mfd_list_real_time . 35
get_ooc . 37
get_outliers_mfd . 38
get_sof_pc_outliers . 39
inprod_mfd . 40
inprod_mfd_diag . 41
is.mfd . 41
lines_mfd . 42
mfd . 43
norm.mfd . 45
pca_mfd . 45
pca_mfd_real_time . 46
plot_bifd . 47
plot_bootstrap_sof_pc . 48
plot_control_charts . 49
plot_control_charts_real_time . 50
plot_mfd . 51
plot_mon . 52
plot_pca_mfd . 54
predict_fof_pc . 54
predict_sof_pc . 55
rbind_mfd . 57
regr_cc_fof . 57
regr_cc_fof_real_time . 59
regr_cc_sof . 62
regr_cc_sof_real_time . 64
RoMFCC_PhaseI . 66

air 3

RoMFCC_PhaseII . 68
RoMFDI . 69
rpca_mfd . 71
scale_mfd . 72
simulate_mfd . 73
sim_funcharts . 76
sof_pc . 77
sof_pc_real_time . 79
tensor_product_mfd . 80
which_ooc . 81
[.mfd . 82

Index 84

air Air quality data

Description

This data set has been included from the R package FRegSigCom. The original .RData file is avail-
able at https://github.com/cran/FRegSigCom/blob/master/data/air.RData.

Data collected hourly in 355 days (days with missing values removed) in a significantly polluted
area within an Italian city.

Usage

data("air")

Format

A list of 7 matrices with 355 rows and 24 columns:

NO2 Hourly observation of concentration level of NO2 in 355 days

CO Hourly observation of concentration level of CO in 355 days

NMHC Hourly observation of concentration level of NMHC in 355 days

NOx Hourly observation of concentration level of NOx in 355 days

C6H6 Hourly observation of concentration level of C6H6 in 355 days

temperature Hourly observation of concentration level of temperature in 355 days

humidity Hourly observation of concentration level of humidity in 355 days

Source

https://archive.ics.uci.edu/ml/datasets/Air+quality

https://github.com/cran/FRegSigCom/
https://github.com/cran/FRegSigCom/blob/master/data/air.RData
https://archive.ics.uci.edu/ml/datasets/Air+quality

4 AMFEWMA_PhaseI

References

De Vito, S., Massera E., Piga M., Martinotto L. and Di Francia G. (2008). On field calibration of
an electronic nose for benzene estimation in an urban pollution monitoring scenario Sensors and
Actuators B: Chemical, 129: 50-757. doi:10.1016/j.snb.2007.09.060

Xin Qi and Ruiyan Luo (2019). Nonlinear function on function additive model with multiple pre-
dictor curves. Statistica Sinica, 29:719-739. doi:10.5705/ss.202017.0249

AMFEWMA_PhaseI Adaptive Multivariate Functional EWMA control chart - Phase I

Description

This function performs Phase I of the Adaptive Multivariate Functional EWMA (AMFEWMA)
control chart proposed by Capezza et al. (2024)

Usage

AMFEWMA_PhaseI(
mfdobj,
mfdobj_tuning,
lambda = NULL,
k = NULL,
ARL0 = 200,
bootstrap_pars = list(n_seq = 200, l_seq = 2000),
optimization_pars = list(lambda_grid = c(0.1, 0.2, 0.3, 0.5, 1), k_grid = c(1, 2, 3,

4), epsilon = 0.1, sd_small = 0.25, sd_big = 2),
discrete_grid_length = 25,
score_function = "huber",
fev = 0.9,
n_skip = 100

)

Arguments

mfdobj An object of class mfd containing the Phase I multivariate functional data set, to
be used to train the multivariate functional principal component analysis model.

mfdobj_tuning An object of class mfd containing the Phase I multivariate functional data set, to
be used as tuning data set to estimate the AMFEWMA control chart limit.

lambda lambda parameter to be used in the score function. See Equation (7) or (8) of
Capezza et al. (2024). If it is provided, it must be a number between zero and
one. If NULL, it is chosen through the selected according to the optimization
procedure presented in Section 2.4 of Capezza et al. (2024). In this case, it is
chosen among the values of optimization_pars$lambda_grid. Default value
is NULL.

doi:10.1016/j.snb.2007.09.060
doi:10.5705/ss.202017.0249

AMFEWMA_PhaseI 5

k k parameter to be used in the score function. See Equation (7) or (8) of Capezza
et al. (2024). If it is provided, it must be a number greater than zero. If NULL, it
is chosen through the selected according to the optimization procedure presented
in Section 2.4 of Capezza et al. (2024). In this case, it is chosen among the
values of optimization_pars$k_grid. Default value is NULL.

ARL0 The nominal in-control average run length. Default value is 200.

bootstrap_pars Parameters of the bootstrap procedure described in Section 2.4 of Capezza et al.
(2024) for the estimation of the control chart limit. It must be a list with two
arguments. n_seq is the number of bootstrap sequences to be generated. l_seq
is the length of each bootstrap sequence, i.e., the number of observations to be
sampled with replacement from the tuning set. Default value is list(n_seq =
200, l_seq = 2000).

optimization_pars

Parameters to be used in the optimization procedure described in Section 2.4
of Capezza et al. (2024) for the selection of the parameters lambda and k. It
must be a list of the following parameters. lambda_grid contains the possible
values of the parameter lambda. k_grid contains the possible values of the
parameter k. epsilon is the parameter used in Equation (10) of Capezza et
al. (2024). When performing the parameter optimization, first the parameters
lambda and k are selected to minimize the ARL with respect to a large shift,
then the same parameters are chosen to minimize the ARL with respect to a
small shift, given that the resulting ARL with respect to the previous large shift
does not increase, in percentage, more than epsilon*100. Default value is 0.1.
sd_small is a positive constant that multiplies the standard deviation function
to define the small shift delta_1 in Section 2.4 of Capezza et al. (2024). In fact,
the small shift is defined as delta_1(t) = mu_0(t) + sd_small * sigma(t), where
mu_0(t) is the estimated in-control mean function and sigma(t) is the estimated
standard deviation function. Default value is 0.25. sd_big is a positive constant
that multiplies the standard deviation function to define the large shift delta_2
in Section 2.4 of Capezza et al. (2024). In fact, the large shift is defined as
delta_2(t) = mu_0(t) + sd_large * sigma(t), where mu_0(t) is the estimated in-
control mean function and sigma(t) is the estimated standard deviation function.
Default value is 2.

discrete_grid_length

The number of equally spaced argument values at which the mfd objects are
discretized. Default value is 25.

score_function Score function to be used in Equation (7) or (8) of Capezza et al. (2024), to
calculate the weighting parameter of the EWMA statistic for each observation
of the sequence. Two values are possible. If "huber", it uses the score function
(7) inspired by the Huber’s function. If "tukey", it uses the score function (8)
inspired by the Tukey’s bisquare function.

fev Number between 0 and 1 denoting the fraction of variability that must be ex-
plained by the principal components to be selected after applying multivariate
functional principal component analysis on mfdobj. Default is 0.9.

n_skip The upper control limit of the AMFEWMA control chart is set to achieve a de-
sired in-control ARL, evaluated after the monitoring statistic has reached steady
state. A monitoring statistic is in a steady state if the process has been in control

6 AMFEWMA_PhaseI

long enough for the effect of the starting value to become negligible (Lucas and
Saccucci, 1990). In this regard, the first n_skip observations are excluded from
the calculation of the run length. Default value is 100.

Value

A list with the following elements. lambda is the selected lambda parameter. k is the selected k
parameter. mod_1 contains the estimated Phase I model. It is a list with the following elements.

• mfdobj the mfdobj object passed as input to this function,

• mfdobj_tuning the mfdobj_tuning object passed as input to this function,

• inv_sigmaY_reg: the matrix containing the discretized version of the function K^*(s,t) de-
fined in Equation (9) of Capezza et al. (2024),

• mean_mfdobj: the estimated mean function,

• h: the calculated upper control limit of the AMFEWMA control chart,

• ARL0: the estimated in-control ARL, which should be close to the nominal value passed as
input to this function,

• lambda: the lambda parameter selected by the optimization procedure described in Section
2.4 of Capezza et al. (2024).

• k: The function C_j(t)=k sigma_j(t) appearing in the score functions (7) and (8) of Capezza et
al. (2024).

• grid_points: the grid containing the points over which the functional data are discretized
before computing the AMFEWMA monitoring statistic and estimating all the model parame-
ters.

• V2_mat: the n_seqXl_seq matrix containing, in each column, the AMFEWMA monitoring
statistic values of each bootstrap sequence. This matrix is used to set the control chart limit h
to ensure that the desired average run length is achieved.

• n_skip: the n_skip input parameter passed to this function,

• huber: if the input parameter score_function is "huber", this is TRUE, else is FALSE,

• vectors: the discretized eigenfunctions psi_l(t) of the covariance function, appearing in
Equation (9) of Capezza et al. (2024).

• values: the eigenvalues rho_l of the covariance function, appearing in Equation (9) of Capezza
et al. (2024).

References

Capezza, C., Capizzi, G., Centofanti, F., Lepore, A., Palumbo, B. (2024) An Adaptive Multivariate
Functional EWMA Control Chart. Accepted for publication in Journal of Quality Technology.

Lucas, J. M., Saccucci, M. S. (1990) Exponentially weighted moving average control schemes:
properties and enhancements. Technometrics, 32(1), 1-12.

AMFEWMA_PhaseII 7

Examples

Not run: set.seed(0)
library(funcharts)
dat_I <- simulate_mfd(nobs = 1000,

correlation_type_x = c("Bessel", "Bessel", "Bessel"),
sd_x = c(0.3, 0.3, 0.3))

dat_tun <- simulate_mfd(nobs = 1000,
correlation_type_x = c("Bessel", "Bessel", "Bessel"),
sd_x = c(0.3, 0.3, 0.3))

dat_II <- simulate_mfd(nobs = 200,
correlation_type_x = c("Bessel", "Bessel", "Bessel"),
shift_type_x = c("C", "C", "C"),
d_x = c(2, 2, 2),
sd_x = c(0.3, 0.3, 0.3))

mfdobj_I <- get_mfd_list(dat_I$X_list)
mfdobj_tun <- get_mfd_list(dat_tun$X_list)
mfdobj_II <- get_mfd_list(dat_II$X_list)

p <- plot_mfd(mfdobj_I[1:100])
lines_mfd(p, mfdobj_II, col = "red")

mod <- AMFEWMA_PhaseI(mfdobj = mfdobj_I, mfdobj_tuning = mfdobj_tun)
print(mod$k)
cc <- AMFEWMA_PhaseII(mfdobj_2 = rbind_mfd(mfdobj_I[1:100], mfdobj_II),

mod_1 = mod)
plot_control_charts(cc$cc, nobsI = 100)

End(Not run)

AMFEWMA_PhaseII Adaptive Multivariate Functional EWMA control chart - Phase II

Description

This function performs Phase II of the Adaptive Multivariate Functional EWMA (AMFEWMA)
control chart proposed by Capezza et al. (2024)

Usage

AMFEWMA_PhaseII(mfdobj_2, mod_1, n_seq_2 = 1, l_seq_2 = 2000)

Arguments

mfdobj_2 An object of class mfd containing the Phase II multivariate functional data set,
to be monitored with the AMFEWMA control chart.

mod_1 The output of the Phase I achieved through the AMFEWMA_PhaseI function.

8 AMFEWMA_PhaseII

n_seq_2 If it is 1, the Phase II monitoring statistic is calculated on the data sequence. If it
is an integer number larger than 1, a number n_seq_2 of bootstrap sequences are
sampled with replacement from mfdobj_2 to allow uncertainty quantification on
the estimation of the run length. Default value is 1.

l_seq_2 If n_seq_2 is larger than 1, this parameter sets the length of each bootstrap
sequence to be generated. Default value is 2000 (which is ignored if the default
value

Value

A list with the following elements.

• ARL_2: the average run length estimated over the bootstrap sequences. If n_seq_2 is 1, it is
simply the run length observed over the Phase II sequence, i.e., the number of observations up
to the first alarm,

• RL: the run length observed over the Phase II sequence, i.e., the number of observations up to
the first alarm,

• V2: a list with length n_seq_2, containing the AMFEWMA monitoring statistic in Equation
(8) of Capezza et al. (2024), calculated in each bootstrap sequence, until the first alarm.

• cc: a data frame with the information needed to plot the AMFEWMA control chart in Phase
II, with the following columns. id contains the id of each multivariate functional observation,
amfewma_monitoring_statistic contains the AMFEWMA monitoring statistic values cal-
culated on the Phase II sequence, amfewma_monitoring_statistic_lim is the upper control
limit.

References

Capezza, C., Capizzi, G., Centofanti, F., Lepore, A., Palumbo, B. (2024) An Adaptive Multivariate
Functional EWMA Control Chart. Accepted for publication in Journal of Quality Technology.

Examples

Not run: set.seed(0)
library(funcharts)
dat_I <- simulate_mfd(nobs = 1000,

correlation_type_x = c("Bessel", "Bessel", "Bessel"),
sd_x = c(0.3, 0.3, 0.3))

dat_tun <- simulate_mfd(nobs = 1000,
correlation_type_x = c("Bessel", "Bessel", "Bessel"),
sd_x = c(0.3, 0.3, 0.3))

dat_II <- simulate_mfd(nobs = 200,
correlation_type_x = c("Bessel", "Bessel", "Bessel"),
shift_type_x = c("C", "C", "C"),
d_x = c(2, 2, 2),
sd_x = c(0.3, 0.3, 0.3))

mfdobj_I <- get_mfd_list(dat_I$X_list)
mfdobj_tun <- get_mfd_list(dat_tun$X_list)
mfdobj_II <- get_mfd_list(dat_II$X_list)

p <- plot_mfd(mfdobj_I[1:100])

cbind_mfd 9

lines_mfd(p, mfdobj_II, col = "red")

mod <- AMFEWMA_PhaseI(mfdobj = mfdobj_I, mfdobj_tuning = mfdobj_tun)
print(mod$lambda)
print(mod$k)
cc <- AMFEWMA_PhaseII(mfdobj_2 = rbind_mfd(mfdobj_I[1:100], mfdobj_II),

mod_1 = mod)
plot_control_charts(cc$cc, nobsI = 100)

End(Not run)

cbind_mfd Bind variables of two Multivariate Functional Data Objects

Description

Bind variables of two Multivariate Functional Data Objects

Usage

cbind_mfd(mfdobj1, mfdobj2)

Arguments

mfdobj1 An object of class mfd, with the same number of replications of mfdobj2 and
different variable names with respect to mfdobj2.

mfdobj2 An object of class mfd, with the same number of replications of mfdobj1, and
different variable names with respect to mfdobj1.

Value

An object of class mfd, whose replications are the same of mfdobj1 and mfdobj2 and whose func-
tional variables are the union of the functional variables in mfdobj1 and mfdobj2.

Examples

library(funcharts)
mfdobj1 <- data_sim_mfd(nvar = 3)
mfdobj2 <- data_sim_mfd(nvar = 2)
dimnames(mfdobj2$coefs)[[3]] <- mfdobj2$fdnames[[3]] <- c("var10", "var11")

plot_mfd(mfdobj1)
plot_mfd(mfdobj2)
mfdobj_cbind <- cbind_mfd(mfdobj1, mfdobj2)
plot_mfd(mfdobj_cbind)

10 control_charts_pca

control_charts_pca T2 and SPE control charts for multivariate functional data

Description

This function builds a data frame needed to plot the Hotelling’s T2 and squared prediction error
(SPE) control charts based on multivariate functional principal component analysis (MFPCA) per-
formed on multivariate functional data, as Capezza et al. (2020) for the multivariate functional
covariates. The training data have already been used to fit the model. An optional tuning data set
can be provided to estimate the control chart limits. A phase II data set contains the observations to
be monitored with the control charts.

Usage

control_charts_pca(
pca,
components = NULL,
tuning_data = NULL,
newdata,
alpha = 0.05,
limits = "standard",
seed,
nfold = 5,
ncores = 1,
tot_variance_explained = 0.9,
single_min_variance_explained = 0,
absolute_error = FALSE

)

Arguments

pca An object of class pca_mfd obtained by doing MFPCA on the training set of
multivariate functional data.

components A vector of integers with the components over which to project the multivariate
functional data. If this is not NULL, the arguments single_min_variance_explained
and tot_variance_explained are ignored. If NULL, components are selected
such that the total fraction of variance explained by them is at least equal to the
argument tot_variance_explained, where only components explaining indi-
vidually a fraction of variance at least equal to the argument single_min_variance_explained
are considered to be retained. Default is NULL.

tuning_data An object of class mfd containing the tuning set of the multivariate functional
data, used to estimate the T2 and SPE control chart limits. If NULL, the training
data, i.e. the data used to fit the MFPCA model, are also used as the tuning data
set, i.e. tuning_data=pca$data. Default is NULL.

newdata An object of class mfd containing the phase II set of the multivariate functional
data to be monitored.

control_charts_pca 11

alpha If it is a number between 0 and 1, it defines the overall type-I error probability
and the Bonferroni correction is applied by setting the type-I error probability in
the two control charts equal to alpha/2. If you want to set manually the Type-I
error probabilities in the two control charts, then the argument alpha must be a
named list with two elements, named T2 and spe, respectively, each containing
the desired Type I error probability of the corresponding control chart. Default
value is 0.05.

limits A character value. If "standard", it estimates the control limits on the tuning data
set. If "cv", the function calculates the control limits only on the training data
using cross-validation using calculate_cv_limits. Default is "standard".

seed If limits=="cv", since the split in the k groups is random, you can fix a seed to
ensure reproducibility. Deprecated: use set.seed() before calling the function
for reproducibility.

nfold If limits=="cv", this gives the number of groups k used for k-fold cross-
validation. If it is equal to the number of observations in the training data set,
then we have leave-one-out cross-validation. Otherwise, this argument is ig-
nored.

ncores If limits=="cv", if you want perform the analysis in the k groups in parallel,
give the number of cores/threads. Otherwise, this argument is ignored.

tot_variance_explained

The minimum fraction of variance that has to be explained by the set of multi-
variate functional principal components retained into the MFPCA model fitted
on the functional covariates. Default is 0.9.

single_min_variance_explained

The minimum fraction of variance that has to be explained by each multivariate
functional principal component such that it is retained into the MFPCA model.
Default is 0.

absolute_error If FALSE, the SPE statistic, which monitors the principal components not re-
tained in the MFPCA model, is calculated as the sum of the integrals of the
squared prediction error functions, obtained as the difference between the actual
functions and their approximation after projection over the selected principal
components. If TRUE, the SPE statistic is calculated by replacing the square
of the prediction errors with the absolute value, as proposed by Capizzi and
Masarotto (2018). Default value is FALSE.

Value

A data.frame with as many rows as the number of multivariate functional observations in the
phase II data set and the following columns:

• one id column identifying the multivariate functional observation in the phase II data set,

• one T2 column containing the Hotelling T2 statistic calculated for all observations,

• one column per each functional variable, containing its contribution to the T2 statistic,

• one spe column containing the SPE statistic calculated for all observations,

• one column per each functional variable, containing its contribution to the SPE statistic,

• T2_lim gives the upper control limit of the Hotelling’s T2 control chart,

12 control_charts_pca_mfd_real_time

• one contribution_T2_*_lim column per each functional variable giving the limits of the
contribution of that variable to the Hotelling’s T2 statistic,

• spe_lim gives the upper control limit of the SPE control chart

• one contribution_spe*_lim column per each functional variable giving the limits of the
contribution of that variable to the SPE statistic.

References

Capezza C, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2020) Control charts for monitor-
ing ship operating conditions and CO2 emissions based on scalar-on-function regression. Applied
Stochastic Models in Business and Industry, 36(3):477–500. doi:10.1002/asmb.2507

Capizzi, G., & Masarotto, G. (2018). Phase I distribution-free analysis with the R package dfphase1.
In Frontiers in Statistical Quality Control 12 (pp. 3-19). Springer International Publishing.

See Also

regr_cc_fof

Examples

library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:220, , drop = FALSE])
fun_covariates <- c("CO", "temperature")
mfdobj_x <- get_mfd_list(air[fun_covariates],

n_basis = 15,
lambda = 1e-2)

y <- rowMeans(air$NO2)
y1 <- y[1:100]
y_tuning <- y[101:200]
y2 <- y[201:220]
mfdobj_x1 <- mfdobj_x[1:100]
mfdobj_x_tuning <- mfdobj_x[101:200]
mfdobj_x2 <- mfdobj_x[201:220]
pca <- pca_mfd(mfdobj_x1)
cclist <- control_charts_pca(pca = pca,

tuning_data = mfdobj_x_tuning,
newdata = mfdobj_x2)

plot_control_charts(cclist)

control_charts_pca_mfd_real_time

Real-time T2 and SPE control charts for multivariate functional data

doi:10.1002/asmb.2507

control_charts_pca_mfd_real_time 13

Description

This function produces a list of data frames, each of them is produced by control_charts_pca
and is needed to plot control charts for monitoring multivariate functional covariates each evolving
up to an intermediate domain point.

Usage

control_charts_pca_mfd_real_time(
pca_list,
components_list = NULL,
mfdobj_x_test,
mfdobj_x_tuning = NULL,
alpha = 0.05,
limits = "standard",
seed,
nfold = NULL,
tot_variance_explained = 0.9,
single_min_variance_explained = 0,
absolute_error = FALSE,
ncores = 1

)

Arguments

pca_list A list of lists produced by pca_mfd_real_time, containing a list of multivariate
functional principal component analysis models estimated on functional data
each evolving up to an intermediate domain point.

components_list

A list of components given as input to pca_mfd for each intermediate domain
point.

mfdobj_x_test A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects in the phase II monitoring data set, each
evolving up to an intermediate domain point, with observations of the multi-
variate functional data. The length of this list and pca_list must be equal,
and their elements in the same position in the list must correspond to the same
intermediate domain point.

mfdobj_x_tuning

A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects in the tuning data set (used to estimate
control chart limits), each evolving up to an intermediate domain point, with ob-
servations of the multivariate functional data The length of this list and pca_list
must be equal, and their elements in the same position in the list must corre-
spond to the same intermediate domain point. If NULL, the training data, i.e.
the functional data in pca_list, are also used as the tuning data set. Default is
NULL.

alpha See control_charts_pca.

limits See control_charts_pca.

14 control_charts_sof_pc

seed Deprecated: See control_charts_pca.

nfold See control_charts_pca.
tot_variance_explained

See control_charts_pca.
single_min_variance_explained

See control_charts_pca.

absolute_error See control_charts_pca.

ncores If you want parallelization, give the number of cores/threads to be used when
creating objects separately for different instants.

Value

A list of data.frames each produced by control_charts_pca, corresponding to a given instant.

See Also

pca_mfd_real_time, control_charts_pca

Examples

library(funcharts)
data("air")
air1 <- lapply(air, function(x) x[1:8, , drop = FALSE])
air2 <- lapply(air, function(x) x[9:10, , drop = FALSE])
mfdobj_x1_list <- get_mfd_list_real_time(air1[c("CO", "temperature")],

n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))

mfdobj_x2_list <- get_mfd_list_real_time(air2[c("CO", "temperature")],
n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))

pca_list <- pca_mfd_real_time(mfdobj_x1_list)

cclist <- control_charts_pca_mfd_real_time(
pca_list = pca_list,
components_list = 1:3,
mfdobj_x_test = mfdobj_x2_list)

plot_control_charts_real_time(cclist, 1)

control_charts_sof_pc Control charts for monitoring a scalar quality characteristic adjusted
for by the effect of multivariate functional covariates

control_charts_sof_pc 15

Description

This function builds a data frame needed to plot control charts for monitoring a monitoring a scalar
quality characteristic adjusted for the effect of multivariate functional covariates based on scalar-
on-function regression, as proposed in Capezza et al. (2020).

In particular, this function provides:

• the Hotelling’s T2 control chart,

• the squared prediction error (SPE) control chart,

• the scalar regression control chart.

This function calls control_charts_pca for the control charts on the multivariate functional co-
variates and regr_cc_sof for the scalar regression control chart.

The training data have already been used to fit the model. An optional tuning data set can be pro-
vided that is used to estimate the control chart limits. A phase II data set contains the observations
to be monitored with the control charts.

Usage

control_charts_sof_pc(
mod,
y_test,
mfdobj_x_test,
mfdobj_x_tuning = NULL,
alpha = list(T2 = 0.0125, spe = 0.0125, y = 0.025),
limits = "standard",
seed,
nfold = NULL,
ncores = 1

)

Arguments

mod A list obtained as output from sof_pc, i.e. a fitted scalar-on-function linear
regression model.

y_test A numeric vector containing the observations of the scalar response variable in
the phase II data set.

mfdobj_x_test An object of class mfd containing the phase II data set of the functional covari-
ates observations.

mfdobj_x_tuning

An object of class mfd containing the tuning set of the multivariate functional
data, used to estimate the T2 and SPE control chart limits. If NULL, the training
data, i.e. the data used to fit the MFPCA model, are also used as the tuning data
set, i.e. tuning_data=pca$data. Default is NULL.

alpha A named list with three elements, named T2, spe, and y, respectively, each
containing the desired Type I error probability of the corresponding control chart
(T2 corresponds to the T2 control chart, spe corresponds to the SPE control
chart, y corresponds to the scalar regression control chart). Note that at the

16 control_charts_sof_pc

moment you have to take into account manually the family-wise error rate and
adjust the two values accordingly. See Capezza et al. (2020) for additional
details. Default value is list(T2 = 0.0125, spe = 0.0125, y = 0.025).

limits A character value. If "standard", it estimates the control limits on the tuning data
set. If "cv", the function calculates the control limits only on the training data
using cross-validation using calculate_cv_limits. Default is "standard".

seed If limits=="cv", since the split in the k groups is random, you can fix a seed to
ensure reproducibility. Deprecated: use set.seed() before calling the function
for reproducibility.

nfold If limits=="cv", this gives the number of groups k used for k-fold cross-
validation. If it is equal to the number of observations in the training data set,
then we have leave-one-out cross-validation. Otherwise, this argument is ig-
nored.

ncores If limits=="cv", if you want perform the analysis in the k groups in parallel,
give the number of cores/threads. Otherwise, this argument is ignored.

Value

A data.frame with as many rows as the number of multivariate functional observations in the
phase II data set and the following columns:

• one id column identifying the multivariate functional observation in the phase II data set,

• one T2 column containing the Hotelling T2 statistic calculated for all observations,

• one column per each functional variable, containing its contribution to the T2 statistic,

• one spe column containing the SPE statistic calculated for all observations,

• one column per each functional variable, containing its contribution to the SPE statistic,

• T2_lim gives the upper control limit of the Hotelling’s T2 control chart,

• one contribution_T2_*_lim column per each functional variable giving the limits of the
contribution of that variable to the Hotelling’s T2 statistic,

• spe_lim gives the upper control limit of the SPE control chart

• one contribution_spe*_lim column per each functional variable giving the limits of the
contribution of that variable to the SPE statistic.

• y_hat: the predictions of the response variable corresponding to mfdobj_x_new,

• y: the same as the argument y_new given as input to this function,

• lwr: lower limit of the 1-alpha prediction interval on the response,

• pred_err: prediction error calculated as y-y_hat,

• pred_err_sup: upper limit of the 1-alpha prediction interval on the prediction error,

• pred_err_inf: lower limit of the 1-alpha prediction interval on the prediction error.

See Also

control_charts_pca, regr_cc_sof

control_charts_sof_pc_real_time 17

Examples

Not run:
#' library(funcharts)
data("air")
air <- lapply(air, function(x) x[201:300, , drop = FALSE])
fun_covariates <- c("CO", "temperature")
mfdobj_x <- get_mfd_list(air[fun_covariates],

n_basis = 15,
lambda = 1e-2)

y <- rowMeans(air$NO2)
y1 <- y[1:60]
y2 <- y[91:100]
mfdobj_x1 <- mfdobj_x[1:60]
mfdobj_x_tuning <- mfdobj_x[61:90]
mfdobj_x2 <- mfdobj_x[91:100]
mod <- sof_pc(y1, mfdobj_x1)
cclist <- control_charts_sof_pc(mod = mod,

y_test = y2,
mfdobj_x_test = mfdobj_x2,
mfdobj_x_tuning = mfdobj_x_tuning)

plot_control_charts(cclist)

End(Not run)

control_charts_sof_pc_real_time

Real-time scalar-on-function regression control charts

Description

This function is deprecated. Use regr_cc_sof_real_time. This function produces a list of data
frames, each of them is produced by control_charts_sof_pc and is needed to plot control charts
for monitoring in real time a scalar quality characteristic adjusted for by the effect of multivariate
functional covariates.

Usage

control_charts_sof_pc_real_time(
mod_list,
y_test,
mfdobj_x_test,
mfdobj_x_tuning = NULL,
alpha = list(T2 = 0.0125, spe = 0.0125, y = 0.025),
limits = "standard",
seed,
nfold = NULL,
ncores = 1

)

18 control_charts_sof_pc_real_time

Arguments

mod_list A list of lists produced by sof_pc_real_time, containing a list of scalar-on-
function linear regression models estimated on functional data each evolving up
to an intermediate domain point.

y_test A numeric vector containing the observations of the scalar response variable in
the phase II monitoring data set.

mfdobj_x_test A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects in the phase II monitoring data set, each
evolving up to an intermediate domain point, with observations of the multivari-
ate functional covariates. The length of this list and mod_list must be equal,
and their elements in the same position in the list must correspond to the same
intermediate domain point.

mfdobj_x_tuning

A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects in the tuning data set (used to estimate
control chart limits), each evolving up to an intermediate domain point, with
observations of the multivariate functional covariates. The length of this list and
mod_list must be equal, and their elements in the same position in the list must
correspond to the same intermediate domain point. If NULL, the training data,
i.e. the functional covariates in mod_list, are also used as the tuning data set.
Default is NULL.

alpha See control_charts_sof_pc.

limits See control_charts_sof_pc.

seed Deprecated: see control_charts_sof_pc.

nfold See control_charts_sof_pc.

ncores If you want parallelization, give the number of cores/threads to be used when
creating objects separately for different instants.

Value

A list of data.frames each produced by control_charts_sof_pc, corresponding to a given in-
stant.

See Also

sof_pc_real_time, control_charts_sof_pc

Examples

Not run:
library(funcharts)
data("air")
air1 <- lapply(air, function(x) x[1:8, , drop = FALSE])
air2 <- lapply(air, function(x) x[9:10, , drop = FALSE])
mfdobj_x1_list <- get_mfd_list_real_time(air1[c("CO", "temperature")],

n_basis = 15,
lambda = 1e-2,

cont_plot 19

k_seq = c(0.5, 1))
mfdobj_x2_list <- get_mfd_list_real_time(air2[c("CO", "temperature")],

n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))

y1 <- rowMeans(air1$NO2)
y2 <- rowMeans(air2$NO2)
mod_list <- sof_pc_real_time(y1, mfdobj_x1_list)
cclist <- control_charts_sof_pc_real_time(

mod_list = mod_list,
y_test = y2,
mfdobj_x_test = mfdobj_x2_list)

plot_control_charts_real_time(cclist, 1)

End(Not run)

cont_plot Produce contribution plots

Description

This function produces a contribution plot from functional control charts for a given observation of
a phase II data set, using ggplot.

Usage

cont_plot(cclist, id_num, which_plot = c("T2", "spe"), print_id = FALSE)

Arguments

cclist A data.frame produced by control_charts_pca, control_charts_sof_pc
regr_cc_fof, or regr_cc_sof.

id_num An index number giving the observation in the phase II data set to be plotted,
i.e. 1 for the first observation, 2 for the second, and so on.

which_plot A character vector. Each value indicates which contribution you want to plot:
"T2" indicates contribution to the Hotelling’s T2 statistic,
"spe" indicates contribution to the squared prediction error statistic.

print_id A logical value, if TRUE, it prints also the id of the observation in the title of
the ggplot. Default is FALSE.

Value

A ggplot containing the contributions of functional variables to the monitoring statistics. Each plot
is a bar plot, with bars corresponding to contribution values and horizontal black segments denoting
corresponding (empirical) upper limits. Bars are coloured by red if contributions exceed their limit.

20 data_sim_mfd

Examples

library(funcharts)
data("air")
air <- lapply(air, function(x) x[201:300, , drop = FALSE])
fun_covariates <- c("CO", "temperature")
mfdobj_x <- get_mfd_list(air[fun_covariates],

n_basis = 15,
lambda = 1e-2)

y <- rowMeans(air$NO2)
y1 <- y[1:60]
y_tuning <- y[61:90]
y2 <- y[91:100]
mfdobj_x1 <- mfdobj_x[1:60]
mfdobj_x_tuning <- mfdobj_x[61:90]
mfdobj_x2 <- mfdobj_x[91:100]
mod <- sof_pc(y1, mfdobj_x1)
cclist <- regr_cc_sof(object = mod,

y_new = y2,
mfdobj_x_new = mfdobj_x2,
y_tuning = y_tuning,
mfdobj_x_tuning = mfdobj_x_tuning,
include_covariates = TRUE)

get_ooc(cclist)
cont_plot(cclist, 3)

data_sim_mfd Simulate multivariate functional data

Description

Simulate random coefficients and create a multivariate functional data object of class mfd. It is
mainly for internal use, to check that the package functions work.

Usage

data_sim_mfd(nobs = 5, nbasis = 5, nvar = 2, seed)

Arguments

nobs Number of functional observations to be simulated.

nbasis Number of basis functions.

nvar Number of functional covariates.

seed Deprecated: use set.seed() before calling the function for reproducibility.

Value

A simulated object of class mfd.

fof_pc 21

Examples

library(funcharts)
data_sim_mfd()

fof_pc Function-on-function linear regression based on principal compo-
nents

Description

Function-on-function linear regression based on principal components. This function performs
multivariate functional principal component analysis (MFPCA) to extract multivariate functional
principal components from the multivariate functional covariates as well as from the functional
response, then it builds a linear regression model of the response scores on the covariate scores.
Both functional covariates and response are standardized before the regression. See Centofanti et
al. (2021) for additional details.

Usage

fof_pc(
mfdobj_y,
mfdobj_x,
tot_variance_explained_x = 0.95,
tot_variance_explained_y = 0.95,
tot_variance_explained_res = 0.95,
components_x = NULL,
components_y = NULL,
type_residuals = "standard"

)

Arguments

mfdobj_y A multivariate functional data object of class mfd denoting the functional re-
sponse variable. Although it is a multivariate functional data object, it must
have only one functional variable.

mfdobj_x A multivariate functional data object of class mfd denoting the functional co-
variates.

tot_variance_explained_x

The minimum fraction of variance that has to be explained by the multivariate
functional principal components retained into the MFPCA model fitted on the
functional covariates. Default is 0.95.

tot_variance_explained_y

The minimum fraction of variance that has to be explained by the multivariate
functional principal components retained into the MFPCA model fitted on the
functional response. Default is 0.95.

22 fof_pc

tot_variance_explained_res

The minimum fraction of variance that has to be explained by the multivariate
functional principal components retained into the MFPCA model fitted on the
functional residuals of the functional regression model. Default is 0.95.

components_x A vector of integers with the components over which to project the functional co-
variates. If NULL, the first components that explain a minimum fraction of vari-
ance equal to tot_variance_explained_x is selected. #’ If this is not NULL,
the criteria to select components are ignored. Default is NULL.

components_y A vector of integers with the components over which to project the functional re-
sponse. If NULL, the first components that explain a minimum fraction of vari-
ance equal to tot_variance_explained_y is selected. #’ If this is not NULL,
the criteria to select components are ignored. Default is NULL.

type_residuals A character value that can be "standard" or "studentized". If "standard", the
MFPCA on functional residuals is calculated on the standardized covariates and
response. If "studentized", the MFPCA on studentized version of the functional
residuals is calculated on the non-standardized covariates and response. See
Centofanti et al. (2021) for additional details.

Value

A list containing the following arguments:

• mod: an object of class lm that is a linear regression model where the response variables are
the MFPCA scores of the response variable and the covariates are the MFPCA scores of the
functional covariates. mod$coefficients contains the matrix of coefficients of the functional
regression basis functions,

• beta_fd: a bifd object containing the bivariate functional regression coefficients β(s, t) es-
timated with the function-on-function linear regression model,

• fitted.values: a multivariate functional data object of class mfd with the fitted values of the
functional response observations based on the function-on-function linear regression model,

• residuals_original_scale: a multivariate functional data object of class mfd with the
functional residuals of the function-on-function linear regression model on the original scale,
i.e. they are the difference between mfdobj_y and fitted.values,

• residuals: a multivariate functional data object of class mfd with the functional residuals of
the function-on-function linear regression model, standardized or studentized depending on
the argument type_residuals,

• type_residuals: the same as the provided argument,

• pca_x: an object of class pca_mfd obtained by doing MFPCA on the functional covariates,

• pca_y: an object of class pca_mfd obtained by doing MFPCA on the functional response,

• pca_res: an object of class pca_mfd obtained by doing MFPCA on the functional residuals,

• components_x: a vector of integers with the components selected in the pca_x model,

• components_y: a vector of integers with the components selected in the pca_y model,

• components_res: a vector of integers with the components selected in the pca_res model,

• y_standardized: the standardized functional response obtained doing scale_mfd(mfdobj_y),

fof_pc_real_time 23

• tot_variance_explained_x: the same as the provided argument

• tot_variance_explained_y: the same as the provided argument

• tot_variance_explained_res: the same as the provided argument

• get_studentized_residuals: a function that allows to calculate studentized residuals on
new data, given the estimated function-on-function linear regression model.

References

Centofanti F, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2021) Functional Regression Control
Chart. Technometrics, 63(3), 281–294. doi:10.1080/00401706.2020.1753581

Examples

library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:10, , drop = FALSE])
fun_covariates <- c("CO", "temperature")
mfdobj <- get_mfd_list(air, lambda = 1e-2)
mfdobj_y <- mfdobj[, "NO2"]
mfdobj_x <- mfdobj[, fun_covariates]
mod <- fof_pc(mfdobj_y, mfdobj_x)

fof_pc_real_time Get a list of function-on-function linear regression models estimated
on functional data each evolving up to an intermediate domain point.

Description

This function produces a list of objects, each of them contains the result of applying fof_pc to a
functional response variable and multivariate functional covariates evolved up to an intermediate
domain point.

Usage

fof_pc_real_time(
mfdobj_y_list,
mfdobj_x_list,
tot_variance_explained_x = 0.95,
tot_variance_explained_y = 0.95,
tot_variance_explained_res = 0.95,
components_x = NULL,
components_y = NULL,
type_residuals = "standard",
ncores = 1

)

doi:10.1080/00401706.2020.1753581

24 fof_pc_real_time

Arguments

mfdobj_y_list A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects, each evolving up to an intermediate do-
main point, with observations of the functional response variable.

mfdobj_x_list A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects, each evolving up to an intermediate do-
main point, with observations of the multivariate functional covariates.

tot_variance_explained_x

See fof_pc.

tot_variance_explained_y

See fof_pc.

tot_variance_explained_res

See fof_pc.

components_x See fof_pc.

components_y See fof_pc.

type_residuals See fof_pc.

ncores If you want parallelization, give the number of cores/threads to be used when
creating objects separately for different instants.

Value

A list of lists each produced by fof_pc, corresponding to a given instant.

See Also

fof_pc, get_mfd_df_real_time, get_mfd_list_real_time

Examples

library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:10, , drop = FALSE])
mfdobj_y_list <- get_mfd_list_real_time(air["NO2"],

n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 0.75, 1))

mfdobj_x_list <- get_mfd_list_real_time(air[c("CO", "temperature")],
n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 0.75, 1))

mod_list <- fof_pc_real_time(mfdobj_y_list, mfdobj_x_list)

functional_filter 25

functional_filter Finds functional componentwise outliers

Description

It finds functional componentwise outliers as described in Capezza et al. (2024).

Usage

functional_filter(
mfdobj,
method_pca = "ROBPCA",
alpha = 0.95,
fev = 0.999,
delta = 0.1,
alpha_binom = 0.99,
bivariate = TRUE,
max_proportion_componentwise = 0.5

)

Arguments

mfdobj A multivariate functional data object of class mfd.

method_pca The method used in rpca_mfd to perform robust multivariate functional princi-
pal component analysis (RoMFPCA). See rpca_mfd.

alpha Probability value such that only values of functional distances greater than the
alpha-quantile of the Chi-squared distribution, with a number of degrees of
freedom equal to the number of principal components selected by fev, are con-
sidered to determine the proportion of flagged componentwise outliers. Default
value is 0.95, as recommended by Agostinelli et al. (2015). See Capezza et al.
(2024) for more details.

fev Number between 0 and 1 denoting the fraction of variability that must be ex-
plained by the principal components to be selected to calculate functional dis-
tances after applying RoMFPCA on mfdobj. Default is 0.999.

delta Number between 0 and 1 denoting the parameter of the Binomial distribution
whose alpha_binom-quantile determines the threshold used in the bivariate fil-
ter. Given the i-th observation and the j-th functional variable, the number of
pairs flagged as functional componentwise outliers in the i-th observation where
the component (i, j) is involved is compared against this threshold to identify
additional functional componentwise outliers to the ones found by the univari-
ate filter. Default is 0.1, recommended as conservative choice by Leung et al.
(2017). See Capezza et al. (2024) for more details.

alpha_binom Probability value such that the alpha-quantile of the Binomial distribution is
considered as threshold in the bivariate filter. See delta and Capezza et al.
(2024) for more details. Default value is 0.99.

26 get_mfd_array

bivariate If TRUE, both univariate and bivariate filters are applied. If FALSE, only the
univariate filter is used. Default is TRUE.

max_proportion_componentwise

If the functional filter identifies a proportion of functional componentwise out-
liers larger than max_proportion_componentwise, for a given observation,
then it is considered as a functional casewise outlier. Default value is 0.5.

Value

A list with two elements. The first element is an mfd object containing the original observation
in the mfdobj input, but where the basis coefficients of the components identified as functional
componentwise outliers are replaced by NA. The second element of the list is a list of numbers,
with length equal to the number of functional variables in mfdobj. Each element of this list contains
the observations of the flagged functional componentwise outliers for the corresponding functional
variable.

References

Agostinelli, C., Leung, A., Yohai, V. J., and Zamar, R. H. (2015). Robust estimation of multivariate
location and scatter in the presence of cellwise and casewise contamination. Test, 24(3):441–461.

Capezza, C., Centofanti, F., Lepore, A., Palumbo, B. (2024) Robust Multivariate Functional Control
Charts. Technometrics, doi:10.1080/00401706.2024.2327346.

Leung, A., Yohai, V., and Zamar, R. (2017). Multivariate location and scatter matrix estimation
under cellwise and casewise contamination. Computational Statistics & Data Analysis, 111:59–76.

Examples

Not run:
library(funcharts)
mfdobj <- get_mfd_list(air, grid = 1:24, n_basis = 13, lambda = 1e-2)
plot_mfd(mfdobj)
out <- functional_filter(mfdobj)

End(Not run)

get_mfd_array Get Multivariate Functional Data from a three-dimensional array

Description

Get Multivariate Functional Data from a three-dimensional array

doi:10.1080/00401706.2024.2327346

get_mfd_array 27

Usage

get_mfd_array(
data_array,
grid = NULL,
n_basis = 30,
n_order = 4,
basisobj = NULL,
Lfdobj = 2,
lambda = NULL,
lambda_grid = 10^seq(-10, 1, length.out = 10),
ncores = 1

)

Arguments

data_array A three-dimensional array. The first dimension corresponds to argument values,
the second to replications, and the third to variables within replications.

grid See get_mfd_list.

n_basis See get_mfd_list.

n_order #’ See get_mfd_list.

basisobj #’ See get_mfd_list.

Lfdobj #’ See get_mfd_list.

lambda See get_mfd_list.

lambda_grid See get_mfd_list.

ncores Deprecated. See get_mfd_list.

Value

An object of class mfd. See also ?mfd for additional details on the multivariate functional data class.

See Also

get_mfd_list, get_mfd_df

Examples

library(funcharts)
library(fda)
data("CanadianWeather")
mfdobj <- get_mfd_array(CanadianWeather$dailyAv[, 1:10,],

lambda = 1e-5)
plot_mfd(mfdobj)

28 get_mfd_array_real_time

get_mfd_array_real_time

Get a list of functional data objects each evolving up to an intermedi-
ate domain point.

Description

This function produces a list functional data objects, each evolving up to an intermediate domain
point, that can be used to estimate models that allow real-time predictions of incomplete functions,
from the current functional domain up to the end of the observation, and to build control charts for
real-time monitoring.

It calls the function get_mfd_array for each domain point.

Usage

get_mfd_array_real_time(
data_array,
grid = NULL,
n_basis = 30,
n_order = 4,
basisobj = NULL,
Lfdobj = 2,
lambda = NULL,
lambda_grid = 10^seq(-10, 1, length.out = 10),
k_seq = seq(from = 0.25, to = 1, length.out = 10),
ncores = 1

)

Arguments

data_array See get_mfd_array.

grid See get_mfd_array.

n_basis See get_mfd_array.

n_order See get_mfd_array.

basisobj See get_mfd_array.

Lfdobj See get_mfd_array.

lambda See get_mfd_array.

lambda_grid See get_mfd_array.

k_seq A vector of values between 0 and 1, containing the domain points over which
functional data are to be evaluated in real time. If the domain is the interval
(a,b), for each instant k in the sequence, functions are evaluated in (a,k(b-a)).

ncores If you want parallelization, give the number of cores/threads to be used when
creating mfd objects separately for different instants.

get_mfd_df 29

Value

A list of mfd objects as produced by get_mfd_array.

See Also

get_mfd_array

Examples

library(funcharts)
library(fda)
data("CanadianWeather")
fdobj <- get_mfd_array_real_time(CanadianWeather$dailyAv[, 1:5, 1:2],

lambda = 1e-2)

get_mfd_df Get Multivariate Functional Data from a data frame

Description

Get Multivariate Functional Data from a data frame

Usage

get_mfd_df(
dt,
domain,
arg,
id,
variables,
n_basis = 30,
n_order = 4,
basisobj = NULL,
Lfdobj = 2,
lambda = NULL,
lambda_grid = 10^seq(-10, 1, length.out = 10),
ncores = 1

)

Arguments

dt A data.frame containing the discrete data. For each functional variable, a sin-
gle column, whose name is provided in the argument variables, contains dis-
crete values of that variable for all functional observation. The column indicated
by the argument id denotes which is the functional observation in each row. The
column indicated by the argument arg gives the argument value at which the
discrete values of the functional variables are observed for each row.

30 get_mfd_df

domain A numeric vector of length 2 defining the interval over which the functional data
object can be evaluated.

arg A character variable, which is the name of the column of the data frame dt
giving the argument values at which the functional variables are evaluated for
each row.

id A character variable indicating which is the functional observation in each row.

variables A vector of characters of the column names of the data frame dt indicating the
functional variables.

n_basis An integer variable specifying the number of basis functions; default value is
30. See details on basis functions.

n_order An integer specifying the order of b-splines, which is one higher than their de-
gree. The default of 4 gives cubic splines.

basisobj An object of class basisfd defining the basis function expansion. Default is
NULL, which means that a basisfd object is created by doing create.bspline.basis(rangeval
= domain,nbasis = n_basis, norder = n_order)

Lfdobj An object of class Lfd defining a linear differential operator of order m. It is
used to specify a roughness penalty through fdPar. Alternatively, a nonnegative
integer specifying the order m can be given and is passed as Lfdobj argument to
the function fdPar, which indicates that the derivative of order m is penalized.
Default value is 2, which means that the integrated squared second derivative is
penalized.

lambda A non-negative real number. If you want to use a single specified smoothing
parameter for all functional data objects in the dataset, this argument is passed
to the function fda::fdPar. Default value is NULL, in this case the smooth-
ing parameter is chosen by minimizing the generalized cross-validation (GCV)
criterion over the grid of values given by the argument. See details on how
smoothing parameters work.

lambda_grid A vector of non-negative real numbers. If lambda is provided as a single number,
this argument is ignored. If lambda is NULL, then this provides the grid of
values over which the optimal smoothing parameter is searched. Default value
is 10^seq(-10,1,l=20).

ncores If you want parallelization, give the number of cores/threads to be used when
doing GCV separately on all observations.

Details

Basis functions are created with fda::create.bspline.basis(domain, n_basis), i.e. B-spline
basis functions of order 4 with equally spaced knots are used to create mfd objects.

The smoothing penalty lambda is provided as fda::fdPar(bs, 2, lambda), where bs is the basis
object and 2 indicates that the integrated squared second derivative is penalized.

Rather than having a data frame with long format, i.e. with all functional observations in a sin-
gle column for each functional variable, if all functional observations are observed on a common
equally spaced grid, discrete data may be available in matrix form for each functional variable. In
this case, see get_mfd_list.

get_mfd_df_real_time 31

Value

An object of class mfd. See also ?mfd for additional details on the multivariate functional data class.

See Also

get_mfd_list

Examples

library(funcharts)

x <- seq(1, 10, length = 25)
y11 <- cos(x)
y21 <- cos(2 * x)
y12 <- sin(x)
y22 <- sin(2 * x)
df <- data.frame(id = factor(rep(1:2, each = length(x))),

x = rep(x, times = 2),
y1 = c(y11, y21),
y2 = c(y12, y22))

mfdobj <- get_mfd_df(dt = df,
domain = c(1, 10),
arg = "x",
id = "id",
variables = c("y1", "y2"),
lambda = 1e-5)

get_mfd_df_real_time Get a list of functional data objects each evolving up to an intermedi-
ate domain point.

Description

This function produces a list functional data objects, each evolving up to an intermediate domain
point, that can be used to estimate models that allow real-time predictions of incomplete functions,
from the current functional domain up to the end of the observation, and to build control charts for
real-time monitoring.

It calls the function get_mfd_df for each domain point.

Usage

get_mfd_df_real_time(
dt,
domain,
arg,
id,

32 get_mfd_df_real_time

variables,
n_basis = 30,
n_order = 4,
basisobj = NULL,
Lfdobj = 2,
lambda = NULL,
lambda_grid = 10^seq(-10, 1, length.out = 10),
k_seq = seq(from = 0.25, to = 1, length.out = 10),
ncores = 1

)

Arguments

dt See get_mfd_df.

domain See get_mfd_df.

arg See get_mfd_df.

id See get_mfd_df.

variables See get_mfd_df.

n_basis See get_mfd_df.

n_order See get_mfd_df.

basisobj See get_mfd_df.

Lfdobj See get_mfd_df.

lambda See get_mfd_df.

lambda_grid See get_mfd_df.

k_seq A vector of values between 0 and 1, containing the domain points over which
functional data are to be evaluated in real time. If the domain is the interval
(a,b), for each instant k in the sequence, functions are evaluated in (a,k(b-a)).

ncores If you want parallelization, give the number of cores/threads to be used when
creating mfd objects separately for different instants.

Value

A list of mfd objects as produced by get_mfd_df, corresponding to a given instant.

See Also

get_mfd_df

Examples

library(funcharts)

x <- seq(1, 10, length = 25)
y11 <- cos(x)
y21 <- cos(2 * x)
y12 <- sin(x)

get_mfd_fd 33

y22 <- sin(2 * x)
df <- data.frame(id = factor(rep(1:2, each = length(x))),

x = rep(x, times = 2),
y1 = c(y11, y21),
y2 = c(y12, y22))

mfdobj_list <- get_mfd_df_real_time(dt = df,
domain = c(1, 10),
arg = "x",
id = "id",
variables = c("y1", "y2"),
lambda = 1e-2)

get_mfd_fd Convert a fd object into a Multivariate Functional Data object.

Description

Convert a fd object into a Multivariate Functional Data object.

Usage

get_mfd_fd(fdobj)

Arguments

fdobj An object of class fd.

Value

An object of class mfd. See also ?mfd for additional details on the multivariate functional data class.

See Also

mfd

Examples

library(funcharts)
library(fda)
bs <- create.bspline.basis(nbasis = 10)
fdobj <- fd(coef = 1:10, basisobj = bs)
mfdobj <- get_mfd_fd(fdobj)

34 get_mfd_list

get_mfd_list Get Multivariate Functional Data from a list of matrices

Description

Get Multivariate Functional Data from a list of matrices

Usage

get_mfd_list(
data_list,
grid = NULL,
n_basis = 30,
n_order = 4,
basisobj = NULL,
Lfdobj = 2,
lambda = NULL,
lambda_grid = 10^seq(-10, 1, length.out = 10),
ncores = 1

)

Arguments

data_list A named list of matrices. Names of the elements in the list denote the functional
variable names. Each matrix in the list corresponds to a functional variable. All
matrices must have the same dimension, where the number of rows corresponds
to replications, while the number of columns corresponds to the argument values
at which functions are evaluated.

grid A numeric vector, containing the argument values at which functions are eval-
uated. Its length must be equal to the number of columns in each matrix in
data_list. Default is NULL, in this case a vector equally spaced numbers be-
tween 0 and 1 is created, with as many numbers as the number of columns in
each matrix in data_list.

n_basis An integer variable specifying the number of basis functions; default value is
30. See details on basis functions.

n_order An integer specifying the order of B-splines, which is one higher than their
degree. The default of 4 gives cubic splines.

basisobj An object of class basisfd defining the B-spline basis function expansion. De-
fault is NULL, which means that a basisfd object is created by doing create.bspline.basis(rangeval
= domain,nbasis = n_basis, norder = n_order)

Lfdobj An object of class Lfd defining a linear differential operator of order m. It is
used to specify a roughness penalty through fdPar. Alternatively, a nonnegative
integer specifying the order m can be given and is passed as Lfdobj argument to
the function fdPar, which indicates that the derivative of order m is penalized.
Default value is 2, which means that the integrated squared second derivative is
penalized.

get_mfd_list_real_time 35

lambda A non-negative real number. If you want to use a single specified smoothing
parameter for all functional data objects in the dataset, this argument is passed
to the function fda::fdPar. Default value is NULL, in this case the smooth-
ing parameter is chosen by minimizing the generalized cross-validation (GCV)
criterion over the grid of values given by the argument. See details on how
smoothing parameters work.

lambda_grid A vector of non-negative real numbers. If lambda is provided as a single number,
this argument is ignored. If lambda is NULL, then this provides the grid of
values over which the optimal smoothing parameter is searched. Default value
is 10^seq(-10,1,l=20).

ncores Deprecated.

Details

Basis functions are created with fda::create.bspline.basis(domain, n_basis), i.e. B-spline
basis functions of order 4 with equally spaced knots are used to create mfd objects.

The smoothing penalty lambda is provided as fda::fdPar(bs, 2, lambda), where bs is the basis
object and 2 indicates that the integrated squared second derivative is penalized.

Rather than having a list of matrices, you may have a data frame with long format, i.e. with all func-
tional observations in a single column for each functional variable. In this case, see get_mfd_df.

Value

An object of class mfd. See also mfd for additional details on the multivariate functional data class.

See Also

mfd, get_mfd_list, get_mfd_array

Examples

library(funcharts)
data("air")
Only take first 5 multivariate functional observations
and only two variables from air
air_small <- lapply(air[c("NO2", "CO")], function(x) x[1:5,])
mfdobj <- get_mfd_list(data_list = air_small)

get_mfd_list_real_time

Get a list of functional data objects each evolving up to an intermedi-
ate domain point.

36 get_mfd_list_real_time

Description

This function produces a list functional data objects, each evolving up to an intermediate domain
point, that can be used to estimate models that allow real-time predictions of incomplete functions,
from the current functional domain up to the end of the observation, and to build control charts for
real-time monitoring.

It calls the function get_mfd_list for each domain point.

Usage

get_mfd_list_real_time(
data_list,
grid = NULL,
n_basis = 30,
n_order = 4,
basisobj = NULL,
Lfdobj = 2,
lambda = NULL,
lambda_grid = 10^seq(-10, 1, length.out = 10),
k_seq = seq(from = 0.2, to = 1, by = 0.1),
ncores = 1

)

Arguments

data_list See get_mfd_list.

grid See get_mfd_list.

n_basis See get_mfd_list.

n_order See get_mfd_list.

basisobj See get_mfd_list.

Lfdobj See get_mfd_list.

lambda See get_mfd_list.

lambda_grid See get_mfd_df.

k_seq A vector of values between 0 and 1, containing the domain points over which
functional data are to be evaluated in real time. If the domain is the interval
(a,b), for each instant k in the sequence, functions are evaluated in (a,a+k(b-a)).

ncores If you want parallelization, give the number of cores/threads to be used when
creating mfd objects separately for different instants.

Value

A list of mfd objects as produced by get_mfd_list.

See Also

get_mfd_list

get_ooc 37

Examples

library(funcharts)
data("air")
Only take first 5 multivariate functional observations from air
air_small <- lapply(air, function(x) x[1:5,])
Consider only 3 domain points: 0.5, 0.75, 1
mfdobj <- get_mfd_list_real_time(data_list = air_small,

lambda = 1e-2,
k_seq = c(0.5, 0.75, 1))

get_ooc Get out of control observations from control charts

Description

Get out of control observations from control charts

Usage

get_ooc(cclist)

Arguments

cclist A data.frame produced by control_charts_pca, control_charts_sof_pc,
regr_cc_fof, or regr_cc_sof.

Value

A data.frame with the same number of rows as cclist, and the same number of columns apart from
the columns indicating control chart limits. Each value is TRUE if the corresponding observation is
in control and FALSE otherwise.

Examples

library(funcharts)
data("air")
air <- lapply(air, function(x) x[201:300, , drop = FALSE])
fun_covariates <- c("CO", "temperature")
mfdobj_x <- get_mfd_list(air[fun_covariates],

n_basis = 15,
lambda = 1e-2)

y <- rowMeans(air$NO2)
y1 <- y[1:60]
y_tuning <- y[61:90]
y2 <- y[91:100]
mfdobj_x1 <- mfdobj_x[1:60]
mfdobj_x_tuning <- mfdobj_x[61:90]
mfdobj_x2 <- mfdobj_x[91:100]

38 get_outliers_mfd

mod <- sof_pc(y1, mfdobj_x1)
cclist <- regr_cc_sof(object = mod,

y_new = y2,
mfdobj_x_new = mfdobj_x2,
y_tuning = y_tuning,
mfdobj_x_tuning = mfdobj_x_tuning,
include_covariates = TRUE)

get_ooc(cclist)

get_outliers_mfd Get outliers from multivariate functional data

Description

Get outliers from multivariate functional data using the functional boxplot with the modified band
depth of Sun et al. (2011, 2012). This function relies on the fbplot function of the roahd package.

Usage

get_outliers_mfd(mfdobj)

Arguments

mfdobj A multivariate functional data object of class mfd

Value

A numeric vector with the indexes of the functional observations signaled as outliers.

References

• Sun, Y., & Genton, M. G. (2011). Functional boxplots. Journal of Computational and Graph-
ical Statistics, 20(2), 316-334.

• Sun, Y., & Genton, M. G. (2012). Adjusted functional boxplots for spatio-temporal data
visualization and outlier detection. Environmetrics, 23(1), 54-64.

Examples

library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:20, , drop = FALSE])
fun_covariates <- c("CO", "temperature")
mfdobj_x <- get_mfd_list(air[fun_covariates], lambda = 1e-2)
get_outliers_mfd(mfdobj_x)

get_sof_pc_outliers 39

get_sof_pc_outliers Get possible outliers of a training data set of a scalar-on-function re-
gression model.

Description

Get possible outliers of a training data set of a scalar-on-function regression model. It sets the
training data set also as tuning data set for the calculation of control chart limits, and as phase
II data set to compare monitoring statistics against the limits and identify possible outliers. This
is only an empirical approach. It is advised to use methods appropriately designed for phase I
monitoring to identify outliers.

Usage

get_sof_pc_outliers(y, mfdobj)

Arguments

y A numeric vector containing the observations of the scalar response variable.

mfdobj A multivariate functional data object of class mfd denoting the functional co-
variates.

Value

A character vector with the ids of functional observations signaled as possibly anomalous.

Examples

Not run:
library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:10, , drop = FALSE])
fun_covariates <- c("CO", "temperature")
mfdobj_x <- get_mfd_list(air[fun_covariates], lambda = 1e-2)
y <- rowMeans(air$NO2)
get_sof_pc_outliers(y, mfdobj_x)

End(Not run)

40 inprod_mfd

inprod_mfd Inner products of functional data contained in mfd objects.

Description

Inner products of functional data contained in mfd objects.

Usage

inprod_mfd(mfdobj1, mfdobj2 = NULL)

Arguments

mfdobj1 A multivariate functional data object of class mfd.

mfdobj2 A multivariate functional data object of class mfd. It must have the same func-
tional variables as mfdobj1. If NULL, it is equal to mfdobj1.

Details

Note that L^2 inner products are not calculated for couples of functional data from different func-
tional variables. This function is needed to calculate the inner product in the product Hilbert space
in the case of multivariate functional data, which for each observation is the sum of the L^2 inner
products obtained for each functional variable.

Value

a three-dimensional array of L^2 inner products. The first dimension is the number of functions
in argument mfdobj1, the second dimension is the same thing for argument mfdobj2, the third
dimension is the number of functional variables. If you sum values over the third dimension, you
get a matrix of inner products in the product Hilbert space of multivariate functional data.

Examples

library(funcharts)
set.seed(123)
mfdobj1 <- data_sim_mfd()
mfdobj2 <- data_sim_mfd()
inprod_mfd(mfdobj1)
inprod_mfd(mfdobj1, mfdobj2)

inprod_mfd_diag 41

inprod_mfd_diag Inner product of two multivariate functional data objects, for each
observation

Description

Inner product of two multivariate functional data objects, for each observation

Usage

inprod_mfd_diag(mfdobj1, mfdobj2 = NULL)

Arguments

mfdobj1 A multivariate functional data object of class mfd.

mfdobj2 A multivariate functional data object of class mfd, with the same number of func-
tional variables and observations as mfdobj1. If NULL, then mfdobj2=mfdobj1.
Default is NULL.

Value

It calculates the inner product of two multivariate functional data objects. The main function inprod
of the package fda calculates inner products among all possible couples of observations. This
means that, if mfdobj1 has n1 observations and mfdobj2 has n2 observations, then for each variable
n1 X n2 inner products are calculated. However, often one is interested only in calculating the n
inner products between the n observations of mfdobj1 and the corresponding n observations of
mfdobj2. This function provides this "diagonal" inner products only, saving a lot of computation
with respect to using fda::inprod and then extracting the diagonal elements. Note that the code
of this function calls a modified version of fda::inprod().

Examples

mfdobj <- data_sim_mfd()
inprod_mfd_diag(mfdobj)

is.mfd Confirm Object has Class mfd

Description

Check that an argument is a multivariate functional data object of class mfd.

Usage

is.mfd(mfdobj)

42 lines_mfd

Arguments

mfdobj An object to be checked.

Value

a logical value: TRUE if the class is correct, FALSE otherwise.

lines_mfd Add the plot of a new multivariate functional data object to an existing
plot.

Description

Add the plot of a new multivariate functional data object to an existing plot.

Usage

lines_mfd(
plot_mfd_obj,
mfdobj_new,
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
na.rm = TRUE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
type_mfd = "mfd",
y_lim_equal = FALSE,
...

)

Arguments

plot_mfd_obj A plot produced by link{plot_mfd}

mfdobj_new A new multivariate functional data object of class mfd to be plotted.

mapping See plot_mfd.

data See plot_mfd.

stat See plot_mfd.

position See plot_mfd.

na.rm See plot_mfd.

orientation See plot_mfd.

show.legend See plot_mfd.

mfd 43

inherit.aes See plot_mfd.

type_mfd See plot_mfd.

y_lim_equal See plot_mfd.

... See plot_mfd.

Value

A plot of the multivariate functional data object added to the existing one.

Examples

library(funcharts)
library(ggplot2)
mfdobj1 <- data_sim_mfd()
mfdobj2 <- data_sim_mfd()
p <- plot_mfd(mfdobj1)
lines_mfd(p, mfdobj_new = mfdobj2)

mfd Define a Multivariate Functional Data Object

Description

This is the constructor function for objects of the mfd class. It is a wrapper to fda::fd, but it
forces the coef argument to be a three-dimensional array of coefficients even if the functional data
is univariate. Moreover, it allows to include the original raw data from which you get the smooth
functional data. Finally, it also includes the matrix of precomputed inner products of the basis
functions, which can be useful to speed up computations when calculating inner products between
functional observations

Usage

mfd(coef, basisobj, fdnames = NULL, raw = NULL, id_var = NULL, B = NULL)

Arguments

coef A three-dimensional array of coefficients:

• the first dimension corresponds to basis functions.
• the second dimension corresponds to the number of multivariate functional

observations.
• the third dimension corresponds to variables.

basisobj A functional basis object defining the basis, as provided to fda::fd, but there is
no default.

44 mfd

fdnames A list of length 3, each member being a string vector containing labels for the
levels of the corresponding dimension of the discrete data.
The first dimension is for a single character indicating the argument values, i.e.
the variable on the functional domain.
The second is for replications, i.e. it denotes the functional observations.
The third is for functional variables’ names.

raw A data frame containing the original discrete data. Default is NULL, however,
if provided, it must contain:
a column (indicated by the id_var argument) denoting the functional observa-
tions, which must correspond to values in fdnames[[2]],
a column named as fdnames[[1]], returning the argument values of each func-
tion
as many columns as the functional variables, named as in fdnames[[3]], con-
taining the discrete functional values for each variable.

id_var A single character value indicating the column in the raw argument containing
the functional observations (as in fdnames[[2]]), default is NULL.

B A matrix with the inner products of the basis functions. If NULL, it is calculated
from the basis object provided. Default is NULL.

Details

To check that an object is of this class, use function is.mfd.

Value

A multivariate functional data object (i.e., having class mfd), which is a list with components named
coefs, basis, and fdnames, as for class fd, with possibly in addition the components raw and
id_var.

References

Ramsay, James O., and Silverman, Bernard W. (2006), Functional Data Analysis, 2nd ed., Springer,
New York.

Ramsay, James O., and Silverman, Bernard W. (2002), Applied Functional Data Analysis, Springer,
New York.

Examples

library(funcharts)
library(fda)
set.seed(0)
nobs <- 5
nbasis <- 10
nvar <- 2
coef <- array(rnorm(nobs * nbasis * nvar), dim = c(nbasis, nobs, nvar))
bs <- create.bspline.basis(rangeval = c(0, 1), nbasis = nbasis)
mfdobj <- mfd(coef = coef, basisobj = bs)
plot_mfd(mfdobj)

norm.mfd 45

norm.mfd Norm of Multivariate Functional Data

Description

Norm of multivariate functional data contained in a mfd object.

Usage

norm.mfd(mfdobj)

Arguments

mfdobj A multivariate functional data object of class mfd.

Value

A vector of length equal to the number of replications in mfdobj, containing the norm of each
multivariate functional observation in the product Hilbert space, i.e. the sum of L^2 norms for each
functional variable.

Examples

library(funcharts)
mfdobj <- data_sim_mfd()
norm.mfd(mfdobj)

pca_mfd Multivariate functional principal components analysis

Description

Multivariate functional principal components analysis (MFPCA) performed on an object of class
mfd. It is a wrapper to fda::pca.fd, providing some additional arguments.

Usage

pca_mfd(mfdobj, scale = TRUE, nharm = 20)

Arguments

mfdobj A multivariate functional data object of class mfd.

scale If TRUE, it scales data before doing MFPCA using scale_mfd. Default is
TRUE.

nharm Number of multivariate functional principal components to be calculated. De-
fault is 20.

46 pca_mfd_real_time

Value

Modified pca.fd object, with multivariate functional principal component scores summed over
variables (fda::pca.fd returns an array of scores when providing a multivariate functional data
object). Moreover, the multivariate functional principal components given in harmonics are con-
verted to the mfd class.

See Also

scale_mfd

Examples

library(funcharts)
mfdobj <- data_sim_mfd()
pca_obj <- pca_mfd(mfdobj)
plot_pca_mfd(pca_obj)

pca_mfd_real_time Get a list of multivariate functional principal component analysis
models estimated on functional data each evolving up to an interme-
diate domain point.

Description

This function produces a list of objects, each of them contains the result of applying pca_mfd to a
multivariate functional data object evolved up to an intermediate domain point.

Usage

pca_mfd_real_time(mfdobj_list, scale = TRUE, nharm = 20, ncores = 1)

Arguments

mfdobj_list A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects, each evolving up to an intermediate do-
main point, with observations of the multivariate functional data.

scale See pca_mfd.

nharm See pca_mfd.

ncores If you want parallelization, give the number of cores/threads to be used when
creating objects separately for different instants.

Value

A list of lists each produced by pca_mfd, corresponding to a given instant.

plot_bifd 47

See Also

pca_mfd

Examples

library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:10, , drop = FALSE])
mfdobj_list <- get_mfd_list_real_time(air[c("CO", "temperature")],

n_basis = 15,
lambda = 1e-2,
k_seq = seq(0.25, 1, length = 5))

mod_list <- pca_mfd_real_time(mfdobj_list)

plot_bifd Plot a Bivariate Functional Data Object.

Description

Plot an object of class bifd using ggplot2 and geom_tile. The object must contain only one single
functional replication.

Usage

plot_bifd(bifd_obj, type_plot = "raster", phi = 40, theta = 40)

Arguments

bifd_obj A bivariate functional data object of class bifd, containing one single replication.

type_plot a character value If "raster", it plots the bivariate functional data object as a raster
image. If "contour", it produces a contour plot. If "perspective", it produces a
perspective plot. Default value is "raster".

phi If type_plot=="perspective", it is the phi argument of the function plot3D::persp3D.

theta If type_plot=="perspective", it is the theta argument of the function plot3D::persp3D.

Value

A ggplot with a geom_tile layer providing a plot of the bivariate functional data object as a heat
map.

Examples

library(funcharts)
mfdobj <- data_sim_mfd(nobs = 1)
tp <- tensor_product_mfd(mfdobj)
plot_bifd(tp)

48 plot_bootstrap_sof_pc

plot_bootstrap_sof_pc Plot bootstrapped estimates of the scalar-on-function regression coef-
ficient

Description

Plot bootstrapped estimates of the scalar-on-function regression coefficient for empirical uncertainty
quantification. For each iteration, a data set is sampled with replacement from the training data use
to fit the model, and the regression coefficient is estimated.

Usage

plot_bootstrap_sof_pc(mod, nboot = 25, ncores = 1)

Arguments

mod A list obtained as output from sof_pc, i.e. a fitted scalar-on-function linear
regression model.

nboot Number of bootstrap replicates

ncores If you want estimate the bootstrap replicates in parallel, give the number of
cores/threads.

Value

A ggplot showing several bootstrap replicates of the multivariate functional coefficients estimated
fitting the scalar-on-function linear model. Gray lines indicate the different bootstrap estimates, the
black line indicate the estimate on the entire dataset.

Examples

library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:10, , drop = FALSE])
fun_covariates <- c("CO", "temperature")
mfdobj_x <- get_mfd_list(air[fun_covariates], lambda = 1e-2)
y <- rowMeans(air$NO2)
mod <- sof_pc(y, mfdobj_x)
plot_bootstrap_sof_pc(mod, nboot = 5)

plot_control_charts 49

plot_control_charts Plot control charts

Description

This function takes as input a data frame produced with functions such as control_charts_pca
and control_charts_sof_pc and produces a ggplot with the desired control charts, i.e. it plots a
point for each observation in the phase II data set against the corresponding control limits.

Usage

plot_control_charts(cclist, nobsI = 0)

Arguments

cclist A data.frame produced by control_charts_pca, control_charts_sof_pc
regr_cc_fof, or regr_cc_sof.

nobsI An integer indicating the first observations that are plotted in gray. It is useful
when one wants to plot the phase I data set together with the phase II data. In
that case, one needs to indicate the number of phase I observations included in
cclist. Default is zero.

Details

Out-of-control points are signaled by colouring them in red.

Value

A ggplot with the functional control charts.

Examples

library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:100, , drop = FALSE])
fun_covariates <- c("CO", "temperature")
mfdobj_x <- get_mfd_list(air[fun_covariates],

n_basis = 15,
lambda = 1e-2)

mfdobj_y <- get_mfd_list(air["NO2"],
n_basis = 15,
lambda = 1e-2)

mfdobj_y1 <- mfdobj_y[1:60]
mfdobj_y_tuning <- mfdobj_y[61:90]
mfdobj_y2 <- mfdobj_y[91:100]
mfdobj_x1 <- mfdobj_x[1:60]
mfdobj_x_tuning <- mfdobj_x[61:90]
mfdobj_x2 <- mfdobj_x[91:100]
mod_fof <- fof_pc(mfdobj_y1, mfdobj_x1)

50 plot_control_charts_real_time

cclist <- regr_cc_fof(mod_fof,
mfdobj_y_new = mfdobj_y2,
mfdobj_x_new = mfdobj_x2,
mfdobj_y_tuning = NULL,
mfdobj_x_tuning = NULL)

plot_control_charts(cclist)

plot_control_charts_real_time

Plot real-time control charts

Description

This function produces a ggplot with the desired real-time control charts. It takes as input a list of
data frames, produced with functions such as regr_cc_fof_real_time and control_charts_sof_pc_real_time,
and the id of the observations for which real-time control charts are desired to be plotted. For each
control chart, the solid line corresponds to the profile of the monitoring statistic and it is compared
against control limits plotted as dashed lines. If a line is outside its limits it is coloured in red.

Usage

plot_control_charts_real_time(cclist, id_num)

Arguments

cclist A list of data frames, produced with functions such as regr_cc_fof_real_time
and control_charts_sof_pc_real_time,

id_num An index number giving the observation in the phase II data set to be plotted,
i.e. 1 for the first observation, 2 for the second, and so on.

Details

If the line, representing the profile of the monitoring statistic over the functional domain, is out-of-
control, then it is coloured in red.

Value

A ggplot with the real-time functional control charts.

See Also

regr_cc_fof_real_time, control_charts_sof_pc_real_time

plot_mfd 51

Examples

library(funcharts)
data("air")
air1 <- lapply(air, function(x) x[1:8, , drop = FALSE])
air2 <- lapply(air, function(x) x[9:10, , drop = FALSE])
mfdobj_x1_list <- get_mfd_list_real_time(air1[c("CO", "temperature")],

n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))

mfdobj_x2_list <- get_mfd_list_real_time(air2[c("CO", "temperature")],
n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))

y1 <- rowMeans(air1$NO2)
y2 <- rowMeans(air2$NO2)
mod_list <- sof_pc_real_time(y1, mfdobj_x1_list)
cclist <- regr_cc_sof_real_time(

mod_list = mod_list,
y_new = y2,
mfdobj_x_new = mfdobj_x2_list,
include_covariates = TRUE)

plot_control_charts_real_time(cclist, 1)

plot_mfd Plot a Multivariate Functional Data Object.

Description

Plot an object of class mfd using ggplot2 and patchwork.

Usage

plot_mfd(
mfdobj,
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
na.rm = TRUE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
type_mfd = "mfd",
y_lim_equal = FALSE,
...

)

52 plot_mon

Arguments

mfdobj A multivariate functional data object of class mfd.

mapping Set of aesthetic mappings additional to x and y as passed to the function ggplot2::geom:line.

data A data.frame providing columns to create additional aesthetic mappings. It
must contain a factor column "id" with the replication values as in mfdobj$fdnames[[2]].
If it contains a column "var", this must contain the functional variables as in
mfdobj$fdnames[[3]].

stat See ggplot2::geom_line.

position See ggplot2::geom_line.

na.rm See ggplot2::geom_line.

orientation See ggplot2::geom_line.

show.legend See ggplot2::geom_line.

inherit.aes See ggplot2::geom_line.

type_mfd A character value equal to "mfd" or "raw". If "mfd", the smoothed functional
data are plotted, if "raw", the original discrete data are plotted.

y_lim_equal A logical value. If TRUE, the limits of the y-axis are the same for all functional
variables. If FALSE, limits are different for each variable. Default value is FALSE.

... See ggplot2::geom_line.

Value

A plot of the multivariate functional data object.

Examples

library(funcharts)
library(ggplot2)
mfdobj <- data_sim_mfd()
ids <- mfdobj$fdnames[[2]]
df <- data.frame(id = ids, first_two_obs = ids %in% c("rep1", "rep2"))
plot_mfd(mapping = aes(colour = first_two_obs),

data = df,
mfdobj = mfdobj)

plot_mon Plot multivariate functional object over the training data set

Description

This function plots selected functions in a phase_II monitoring data set against the corresponding
training data set to be compared.

plot_mon 53

Usage

plot_mon(cclist, fd_train, fd_test, plot_title = FALSE, print_id = FALSE)

Arguments

cclist A data.frame produced by control_charts_pca, control_charts_sof_pc
regr_cc_fof, or regr_cc_sof.

fd_train An object of class mfd containing the training data set of the functional variables.
They are plotted in gray in the background.

fd_test An object of class mfd containing the phase II data set of the functional variables
to be monitored. They are coloured in black or red on the foreground.

plot_title A logical value. If TRUE, it prints the title with the observation name. Default is
FALSE.

print_id A logical value. If TRUE, and also plot_title is TRUE, it prints also the id of
the observation in the title of the ggplot. Default is FALSE

Value

A ggplot of the multivariate functional data. In particular, the multivariate functional data given
in fd_train are plotted on the background in gray, while the multivariate functional data given in
fd_test are plotted on the foreground, the colour of each curve is black or red depending on if that
curve was signal as anomalous by at least a contribution plot.

Examples

library(funcharts)
data("air")
air <- lapply(air, function(x) x[201:300, , drop = FALSE])
fun_covariates <- c("CO", "temperature")
mfdobj_x <- get_mfd_list(air[fun_covariates],

n_basis = 15,
lambda = 1e-2)

y <- rowMeans(air$NO2)
y1 <- y[1:60]
y_tuning <- y[61:90]
y2 <- y[91:100]
mfdobj_x1 <- mfdobj_x[1:60]
mfdobj_x_tuning <- mfdobj_x[61:90]
mfdobj_x2 <- mfdobj_x[91:100]
mod <- sof_pc(y1, mfdobj_x1)
cclist <- regr_cc_sof(object = mod,

y_new = y2,
mfdobj_x_new = mfdobj_x2,
y_tuning = y_tuning,
mfdobj_x_tuning = mfdobj_x_tuning,
include_covariates = TRUE)

get_ooc(cclist)
cont_plot(cclist, 3)
plot_mon(cclist, fd_train = mfdobj_x1, fd_test = mfdobj_x2[3])

54 predict_fof_pc

plot_pca_mfd Plot the harmonics of a pca_mfd object

Description

Plot the harmonics of a pca_mfd object

Usage

plot_pca_mfd(pca, harm = 0, scaled = FALSE)

Arguments

pca A fitted multivariate functional principal component analysis (MFPCA) object
of class pca_mfd.

harm A vector of integers with the harmonics to plot. If 0, all harmonics are plotted.
Default is 0.

scaled If TRUE, eigenfunctions are multiplied by the square root of the corresponding
eigenvalues, if FALSE the are not scaled and the all have unit norm. Default is
FALSE

Value

A ggplot of the harmonics/multivariate functional principal components contained in the object pca.

Examples

library(funcharts)
mfdobj <- data_sim_mfd()
pca_obj <- pca_mfd(mfdobj)
plot_pca_mfd(pca_obj)

predict_fof_pc Use a function-on-function linear regression model for prediction

Description

Predict new observations of the functional response variable and calculate the corresponding pre-
diction error (and their standardized or studentized version) given new observations of functional
covariates and a fitted function-on-function linear regression model.

Usage

predict_fof_pc(object, mfdobj_y_new, mfdobj_x_new)

predict_sof_pc 55

Arguments

object A list obtained as output from fof_pc, i.e. a fitted function-on-function linear
regression model.

mfdobj_y_new An object of class mfd containing new observations of the functional response.

mfdobj_x_new An object of class mfd containing new observations of the functional covariates.

Value

A list of mfd objects. It contains:

• pred_error: the prediction error of the standardized functional response variable,

• pred_error_original_scale: the prediction error of the functional response variable on the
original scale,

• y_hat_new: the prediction of the functional response observations on the original scale,

• y_z_new: the standardized version of the functional response observations provided in mfdobj_y_new,

• y_hat_z_new: the prediction of the functional response observations on the standardized/studentized
scale.

References

Centofanti F, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2021) Functional Regression Control
Chart. Technometrics, 63(3), 281–294. doi:10.1080/00401706.2020.1753581

Examples

library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:10, , drop = FALSE])
fun_covariates <- c("CO", "temperature")
mfdobj_x <- get_mfd_list(air[fun_covariates], lambda = 1e-2)
mfdobj_y <- get_mfd_list(air["NO2"], lambda = 1e-2)
mod <- fof_pc(mfdobj_y, mfdobj_x)
predict_fof_pc(mod,

mfdobj_y_new = mfdobj_y,
mfdobj_x_new = mfdobj_x)

predict_sof_pc Use a scalar-on-function linear regression model for prediction

Description

Predict new observations of the scalar response variable and calculate the corresponding prediction
error, with prediction interval limits, given new observations of functional covariates and a fitted
scalar-on-function linear regression model

doi:10.1080/00401706.2020.1753581

56 predict_sof_pc

Usage

predict_sof_pc(
object,
y_new = NULL,
mfdobj_x_new = NULL,
alpha = 0.05,
newdata

)

Arguments

object A list obtained as output from sof_pc, i.e. a fitted scalar-on-function linear
regression model.

y_new A numeric vector containing the new observations of the scalar response variable
to be predicted.

mfdobj_x_new An object of class mfd containing new observations of the functional covariates.
If NULL, it is set as the functional covariates data used for model fitting.

alpha A numeric value indicating the Type I error for the regression control chart and
such that this function returns the 1-alpha prediction interval on the response.
Default is 0.05.

newdata Deprecated, use mfdobj_x_new argument.

Value

A data.frame with as many rows as the number of functional replications in newdata, with the
following columns:

• fit: the predictions of the response variable corresponding to new_data,

• lwr: lower limit of the 1-alpha prediction interval on the response, based on the assumption
that it is normally distributed.

• upr: upper limit of the 1-alpha prediction interval on the response, based on the assumption
that it is normally distributed.

• res: the residuals obtained as the values of y_new minus their fitted values. If the scalar-on-
function model has been fitted with type_residual == "studentized", then the studentized
residuals are calculated.

Examples

library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:10, , drop = FALSE])
fun_covariates <- c("CO", "temperature")
mfdobj_x <- get_mfd_list(air[fun_covariates], lambda = 1e-2)
y <- rowMeans(air$NO2)
mod <- sof_pc(y, mfdobj_x)
predict_sof_pc(mod)

rbind_mfd 57

rbind_mfd Bind replications of two Multivariate Functional Data Objects

Description

Bind replications of two Multivariate Functional Data Objects

Usage

rbind_mfd(mfdobj1, mfdobj2)

Arguments

mfdobj1 An object of class mfd, with the same variables of mfdobj2 and different repli-
cation names with respect to mfdobj2.

mfdobj2 An object of class mfd, with the same variables of mfdobj1, and different repli-
cation names with respect to mfdobj1.

Value

An object of class mfd, whose variables are the same of mfdobj1 and mfdobj2 and whose replica-
tions are the union of the replications in mfdobj1 and mfdobj2.

Examples

library(funcharts)
mfdobj1 <- data_sim_mfd(nvar = 3, nobs = 4)
mfdobj2 <- data_sim_mfd(nvar = 3, nobs = 5)
dimnames(mfdobj2$coefs)[[2]] <-

mfdobj2$fdnames[[2]] <-
c("rep11", "rep12", "rep13", "rep14", "rep15")

mfdobj_rbind <- rbind_mfd(mfdobj1, mfdobj2)
plot_mfd(mfdobj_rbind)

regr_cc_fof Functional Regression Control Chart

Description

It builds a data frame needed to plot the Functional Regression Control Chart introduced in Cento-
fanti et al. (2021), for monitoring a functional quality characteristic adjusted for by the effect of
multivariate functional covariates, based on a fitted function-on-function linear regression model.
The training data have already been used to fit the model. An optional tuning data set can be pro-
vided that is used to estimate the control chart limits. A phase II data set contains the observations
to be monitored with the control charts. It also allows to jointly monitor the multivariate functional
covariates.

58 regr_cc_fof

Usage

regr_cc_fof(
object,
mfdobj_y_new,
mfdobj_x_new,
mfdobj_y_tuning = NULL,
mfdobj_x_tuning = NULL,
alpha = 0.05,
include_covariates = FALSE,
absolute_error = FALSE

)

Arguments

object A list obtained as output from fof_pc, i.e. a fitted function-on-function linear
regression model.

mfdobj_y_new An object of class mfd containing the phase II data set of the functional response
observations to be monitored.

mfdobj_x_new An object of class mfd containing the phase II data set of the functional covari-
ates observations to be monitored.

mfdobj_y_tuning

An object of class mfd containing the tuning data set of the functional response
observations, used to estimate the control chart limits. If NULL, the training
data, i.e. the data used to fit the function-on-function linear regression model, are
also used as the tuning data set, i.e. mfdobj_y_tuning=objectpca_ydata.
Default is NULL.

mfdobj_x_tuning

An object of class mfd containing the tuning data set of the functional covariates
observations, used to estimate the control chart limits. If NULL, the training
data, i.e. the data used to fit the function-on-function linear regression model, are
also used as the tuning data set, i.e. mfdobj_x_tuning=objectpca_xdata.
Default is NULL.

alpha If it is a number between 0 and 1, it defines the overall type-I error probability.
By default, it is equal to 0.05 and the Bonferroni correction is applied by setting
the type-I error probabilities equal to alpha/2 in the Hotelling’s T2 and SPE
control charts. If include_covariates is TRUE, i.e., the Hotelling’s T2 and
SPE control charts are built also on the multivariate functional covariates, then
the Bonferroni correction is applied by setting the type-I error probability in the
four control charts equal to alpha/4. If you want to set manually the Type-I
error probabilities, then the argument alpha must be a named list with elements
named as T2, spe, T2_x and, spe_x, respectively, containing the desired Type
I error probability of the T2 and SPE control charts for the functional response
and the multivariate functional covariates, respectively.

include_covariates

If TRUE, also functional covariates are monitored through control_charts_pca,.
If FALSE, only the functional response, conditionally on the covariates, is mon-
itored.

absolute_error A logical value that, if include_covariates is TRUE, is passed to control_charts_pca.

regr_cc_fof_real_time 59

Value

A data.frame containing the output of the function control_charts_pca applied to the prediction
errors.

References

Centofanti F, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2021) Functional Regression Control
Chart. Technometrics, 63(3), 281–294. doi:10.1080/00401706.2020.1753581

See Also

control_charts_pca

Examples

library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:100, , drop = FALSE])
fun_covariates <- c("CO", "temperature")
mfdobj_x <- get_mfd_list(air[fun_covariates],

n_basis = 15,
lambda = 1e-2)

mfdobj_y <- get_mfd_list(air["NO2"],
n_basis = 15,
lambda = 1e-2)

mfdobj_y1 <- mfdobj_y[1:60]
mfdobj_y_tuning <- mfdobj_y[61:90]
mfdobj_y2 <- mfdobj_y[91:100]
mfdobj_x1 <- mfdobj_x[1:60]
mfdobj_x_tuning <- mfdobj_x[61:90]
mfdobj_x2 <- mfdobj_x[91:100]
mod_fof <- fof_pc(mfdobj_y1, mfdobj_x1)
cclist <- regr_cc_fof(mod_fof,

mfdobj_y_new = mfdobj_y2,
mfdobj_x_new = mfdobj_x2,
mfdobj_y_tuning = NULL,
mfdobj_x_tuning = NULL)

plot_control_charts(cclist)

regr_cc_fof_real_time Real-time functional regression control chart

Description

This function produces a list of data frames, each of them is produced by regr_cc_fof and is
needed to plot control charts for monitoring in real time a functional quality characteristic adjusted
for by the effect of multivariate functional covariates.

doi:10.1080/00401706.2020.1753581

60 regr_cc_fof_real_time

Usage

regr_cc_fof_real_time(
mod_list,
mfdobj_y_new_list,
mfdobj_x_new_list,
mfdobj_y_tuning_list = NULL,
mfdobj_x_tuning_list = NULL,
alpha = 0.05,
include_covariates = FALSE,
absolute_error = FALSE,
ncores = 1

)

Arguments

mod_list A list of lists produced by fof_pc_real_time, containing a list of function-on-
function linear regression models estimated on functional data each evolving up
to an intermediate domain point.

mfdobj_y_new_list

A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects in the phase II monitoring data set, each
evolving up to an intermediate domain point, with observations of the functional
response variable The length of this list and mod_list must be equal, and their
elements in the same position in the list must correspond to the same intermedi-
ate domain point.

mfdobj_x_new_list

A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects in the phase II monitoring data set, each
evolving up to an intermediate domain point, with observations of the multivari-
ate functional covariates. The length of this list and mod_list must be equal,
and their elements in the same position in the list must correspond to the same
intermediate domain point.

mfdobj_y_tuning_list

A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects in the tuning data set (used to estimate
control chart limits), each evolving up to an intermediate domain point, with
observations of the functional response variable. The length of this list and
mod_list must be equal, and their elements in the same position in the list must
correspond to the same intermediate domain point. If NULL, the training data,
i.e. the functional response in mod_list, is also used as the tuning data set.
Default is NULL.

mfdobj_x_tuning_list

A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects in the tuning data set (used to estimate
control chart limits), each evolving up to an intermediate domain point, with
observations of the multivariate functional covariates. The length of this list and
mod_list must be equal, and their elements in the same position in the list must
correspond to the same intermediate domain point. If NULL, the training data,

regr_cc_fof_real_time 61

i.e. the functional covariates in mod_list, are also used as the tuning data set.
Default is NULL.

alpha See regr_cc_fof.

include_covariates

See regr_cc_fof.

absolute_error See regr_cc_fof.

ncores If you want parallelization, give the number of cores/threads to be used when
creating objects separately for different instants.

Value

A list of data.frames each produced by regr_cc_fof, corresponding to a given instant.

See Also

fof_pc_real_time, regr_cc_fof

Examples

library(funcharts)
data("air")
air1 <- lapply(air, function(x) x[1:8, , drop = FALSE])
air2 <- lapply(air, function(x) x[9:10, , drop = FALSE])
mfdobj_x1_list <- get_mfd_list_real_time(air1[c("CO", "temperature")],

n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))

mfdobj_x2_list <- get_mfd_list_real_time(air2[c("CO", "temperature")],
n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))

mfdobj_y1_list <- get_mfd_list_real_time(air1["NO2"],
n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))

mfdobj_y2_list <- get_mfd_list_real_time(air2["NO2"],
n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))

mod_list <- fof_pc_real_time(mfdobj_y1_list, mfdobj_x1_list)
cclist <- regr_cc_fof_real_time(

mod_list = mod_list,
mfdobj_y_new_list = mfdobj_y2_list,
mfdobj_x_new_list = mfdobj_x2_list)

plot_control_charts_real_time(cclist, 1)

62 regr_cc_sof

regr_cc_sof Scalar-on-Function Regression Control Chart

Description

This function is deprecated. Use regr_cc_sof. This function builds a data frame needed to plot
the scalar-on-function regression control chart, based on a fitted function-on-function linear regres-
sion model and proposed in Capezza et al. (2020). If include_covariates is TRUE, it also plots
the Hotelling’s T2 and squared prediction error control charts built on the multivariate functional
covariates.

Usage

regr_cc_sof(
object,
y_new,
mfdobj_x_new,
y_tuning = NULL,
mfdobj_x_tuning = NULL,
alpha = 0.05,
parametric_limits = FALSE,
include_covariates = FALSE,
absolute_error = FALSE

)

Arguments

object A list obtained as output from sof_pc, i.e. a fitted scalar-on-function linear
regression model.

y_new A numeric vector containing the observations of the scalar response variable in
the phase II data set.

mfdobj_x_new An object of class mfd containing the phase II data set of the functional covari-
ates observations.

y_tuning A numeric vector containing the observations of the scalar response variable in
the tuning data set. If NULL, the training data, i.e. the data used to fit the scalar-
on-function regression model, are also used as the tuning data set. Default is
NULL.

mfdobj_x_tuning

An object of class mfd containing the tuning set of the multivariate functional
data, used to estimate the control chart limits. If NULL, the training data, i.e.
the data used to fit the scalar-on-function regression model, are also used as the
tuning data set. Default is NULL.

alpha If it is a number between 0 and 1, it defines the overall type-I error probability.
If include_covariates is TRUE, i.e., also the Hotelling’s T2 and SPE control
charts are built on the functional covariates, then the Bonferroni correction is
applied by setting the type-I error probability in the three control charts equal to

regr_cc_sof 63

alpha/3. In this last case, if you want to set manually the Type-I error probabil-
ities, then the argument alpha must be a named list with three elements, named
T2, spe and y, respectively, each containing the desired Type I error probability
of the corresponding control chart, where y refers to the regression control chart.
Default value is 0.05.

parametric_limits

If TRUE, the limits are calculated based on the normal distribution assumption
on the response variable, as in Capezza et al. (2020). If FALSE, the limits are
calculated nonparametrically as empirical quantiles of the distribution of the
residuals calculated on the tuning data set. The default value is FALSE.

include_covariates

If TRUE, also functional covariates are monitored through control_charts_pca,.
If FALSE, only the scalar response, conditionally on the covariates, is moni-
tored.

absolute_error A logical value that, if include_covariates is TRUE, is passed to control_charts_pca.

Details

The training data have already been used to fit the model. An additional tuning data set can be pro-
vided that is used to estimate the control chart limits. A phase II data set contains the observations
to be monitored with the built control charts.

Value

A data.frame with as many rows as the number of functional replications in mfdobj_x_new, with
the following columns:

• y_hat: the predictions of the response variable corresponding to mfdobj_x_new,

• y: the same as the argument y_new given as input to this function,

• lwr: lower limit of the 1-alpha prediction interval on the response,

• pred_err: prediction error calculated as y-y_hat,

• pred_err_sup: upper limit of the 1-alpha prediction interval on the prediction error,

• pred_err_inf: lower limit of the 1-alpha prediction interval on the prediction error.

References

Capezza C, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2020) Control charts for monitor-
ing ship operating conditions and CO2 emissions based on scalar-on-function regression. Applied
Stochastic Models in Business and Industry, 36(3):477–500. doi:10.1002/asmb.2507

Examples

library(funcharts)
air <- lapply(air, function(x) x[1:100, , drop = FALSE])
fun_covariates <- c("CO", "temperature")
mfdobj_x <- get_mfd_list(air[fun_covariates],

n_basis = 15,
lambda = 1e-2)

doi:10.1002/asmb.2507

64 regr_cc_sof_real_time

y <- rowMeans(air$NO2)
y1 <- y[1:80]
y2 <- y[81:100]
mfdobj_x1 <- mfdobj_x[1:80]
mfdobj_x2 <- mfdobj_x[81:100]
mod <- sof_pc(y1, mfdobj_x1)
cclist <- regr_cc_sof(object = mod,

y_new = y2,
mfdobj_x_new = mfdobj_x2)

plot_control_charts(cclist)

regr_cc_sof_real_time Real-time Scalar-on-Function Regression Control Chart

Description

This function builds a list of data frames, each of them is produced by regr_cc_sof and is needed
to plot control charts for monitoring in real time a scalar quality characteristic adjusted for by the
effect of multivariate functional covariates. The training data have already been used to fit the
model. An additional tuning data set can be provided that is used to estimate the control chart
limits. A phase II data set contains the observations to be monitored with the built control charts.

Usage

regr_cc_sof_real_time(
mod_list,
y_new,
mfdobj_x_new_list,
y_tuning = NULL,
mfdobj_x_tuning_list = NULL,
alpha = 0.05,
parametric_limits = TRUE,
include_covariates = FALSE,
absolute_error = FALSE,
ncores = 1

)

Arguments

mod_list A list of lists produced by sof_pc_real_time, containing a list of scalar-on-
function linear regression models estimated on functional data each evolving up
to an intermediate domain point.

y_new A numeric vector containing the observations of the scalar response variable in
the phase II monitoring data set.

regr_cc_sof_real_time 65

mfdobj_x_new_list

A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects in the phase II monitoring data set, each
evolving up to an intermediate domain point, with observations of the multivari-
ate functional covariates. The length of this list and mod_list must be equal,
and their elements in the same position in the list must correspond to the same
intermediate domain point.

y_tuning An optional numeric vector containing the observations of the scalar response
variable in the tuning data set. If NULL, the training data, i.e. the scalar response
in mod_list, is also used as the tuning data set. Default is NULL.

mfdobj_x_tuning_list

A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects in the tuning data set (used to estimate
control chart limits), each evolving up to an intermediate domain point, with
observations of the multivariate functional covariates. The length of this list and
mod_list must be equal, and their elements in the same position in the list must
correspond to the same intermediate domain point. If NULL, the training data,
i.e. the functional covariates in mod_list, are also used as the tuning data set.
Default is NULL.

alpha See regr_cc_sof.
parametric_limits

See regr_cc_sof.
include_covariates

See regr_cc_sof.

absolute_error See regr_cc_sof.

ncores If you want parallelization, give the number of cores/threads to be used when
creating objects separately for different instants.

Value

A list of data.frames each produced by regr_cc_sof, corresponding to a given instant.

See Also

sof_pc_real_time, regr_cc_sof

Examples

library(funcharts)
data("air")
air1 <- lapply(air, function(x) x[1:8, , drop = FALSE])
air2 <- lapply(air, function(x) x[9:10, , drop = FALSE])
mfdobj_x1_list <- get_mfd_list_real_time(air1[c("CO", "temperature")],

n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))

mfdobj_x2_list <- get_mfd_list_real_time(air2[c("CO", "temperature")],
n_basis = 15,

66 RoMFCC_PhaseI

lambda = 1e-2,
k_seq = c(0.5, 1))

mfdobj_y1_list <- get_mfd_list_real_time(air1["NO2"],
n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))

mfdobj_y2_list <- get_mfd_list_real_time(air2["NO2"],
n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 1))

mod_list <- fof_pc_real_time(mfdobj_y1_list, mfdobj_x1_list)
cclist <- regr_cc_fof_real_time(

mod_list = mod_list,
mfdobj_y_new_list = mfdobj_y2_list,
mfdobj_x_new_list = mfdobj_x2_list)

plot_control_charts_real_time(cclist, 1)

RoMFCC_PhaseI Robust Multivariate Functional Control Charts - Phase I

Description

It performs Phase I of the Robust Multivariate Functional Control Chart (RoMFCC) as proposed by
Capezza et al. (2024).

Usage

RoMFCC_PhaseI(
mfdobj,
mfdobj_tuning = NULL,
functional_filter_par = list(filter = TRUE),
imputation_par = list(method_imputation = "RoMFDI"),
pca_par = list(fev = 0.7),
alpha = 0.05

)

Arguments

mfdobj A multivariate functional data object of class mfd. A functional filter is applied
to this data set, then flagged functional componentwise outliers are imputed in
the robust imputation step. Finally robust multivariate functional principal com-
ponent analysis is applied to the imputed data set for dimension reduction.

mfdobj_tuning An additional functional data object of class mfd. After applying the filter and
imputation steps on this data set, it is used to robustly estimate the distribution
of the Hotelling’s T2 and SPE statistics in order to calculate control limits to
prevent overfitting issues that could reduce the monitoring performance of the
RoMFCC. Default is NULL, but it is strongly recommended to use a tuning data
set.

RoMFCC_PhaseI 67

functional_filter_par

A list with an argument filter that can be TRUE or FALSE depending on if
the functional filter step must be performed or not. All the other arguments
of this list are passed as arguments to the function functional_filter in the
filtering step. All the arguments that are not passed take their default values. See
functional_filter for all the arguments and their default values. Default is
list(filter = TRUE).

imputation_par A list with an argument method_imputation that can be "RoMFDI" or "mean"
depending on if the imputation step must be done by means of RoMFDI or by just
using the mean of each functional variable. If method_imputation = "RoMFDI",
all the other arguments of this list are passed as arguments to the function RoMFDI
in the imputation step. All the arguments that are not passed take their default
values. See RoMFDI for all the arguments and their default values. Default value
is list(method_imputation = "RoMFDI").

pca_par A list with an argument fev, indicating a number between 0 and 1 denoting the
fraction of variability that must be explained by the principal components to be
selected in the RoMFPCA step. All the other arguments of this list are passed as
arguments to the function rpca_mfd in the RoMFPCA step. All the arguments
that are not passed take their default values. See rpca_mfd for all the arguments
and their default values. Default value is list(fev = 0.7).

alpha The overall nominal type-I error probability used to set control chart limits. De-
fault value is 0.05.

Value

A list of the following elements that are needed in Phase II:

• T2 the Hotelling’s T2 statistic values for the Phase I data set,

• SPE the SPE statistic values for the Phase I data set,

• T2_tun the Hotelling’s T2 statistic values for the tuning data set,

• SPE_tun the SPE statistic values for the tuning data set,

• T2_lim the Phase II control limit of the Hotelling’s T2 control chart,

• spe_lim the Phase II control limit of the SPE control chart,

• tuning TRUE if the tuning data set is provided, FALSE otherwise,

• mod_pca the final RoMFPCA model fitted on the Phase I data set,

• K = K the number of selected principal components,

• T_T2_inv if a tuning data set is provided, it returns the inverse of the covariance matrix of the
first K scores, needed to calculate the Hotelling’s T2 statistic for the Phase II observations.

• mean_scores_tuning_rob_mean if a tuning data set is provided, it returns the robust location
estimate of the scores, needed to calculate the Hotelling’s T2 and SPE statistics for the Phase
II observations.

References

Capezza, C., Centofanti, F., Lepore, A., Palumbo, B. (2024) Robust Multivariate Functional Control
Charts. Technometrics, doi:10.1080/00401706.2024.2327346.

doi:10.1080/00401706.2024.2327346

68 RoMFCC_PhaseII

Examples

Not run:
library(funcharts)
mfdobj <- get_mfd_list(air, n_basis = 5)
nobs <- dim(mfdobj$coefs)[2]
set.seed(0)
ids <- sample(1:nobs)
mfdobj1 <- mfdobj[ids[1:100]]
mfdobj_tuning <- mfdobj[ids[101:300]]
mfdobj2 <- mfdobj[ids[-(1:300)]]
mod_phase1 <- RoMFCC_PhaseI(mfdobj = mfdobj1,

mfdobj_tuning = mfdobj_tuning)
phase2 <- RoMFCC_PhaseII(mfdobj_new = mfdobj2,

mod_phase1 = mod_phase1)
plot_control_charts(phase2)

End(Not run)

RoMFCC_PhaseII Robust Multivariate Functional Control Charts - Phase II

Description

It calculates the Hotelling’s and SPE monitoring statistics needed to plot the Robust Multivariate
Functional Control Chart in Phase II.

Usage

RoMFCC_PhaseII(mfdobj_new, mod_phase1)

Arguments

mfdobj_new A multivariate functional data object of class mfd, containing the Phase II ob-
servations to be monitored.

mod_phase1 Output obtained by applying the function RoMFCC_PhaseI to perform Phase I.
See RoMFCC_PhaseI.

Value

A data.frame with as many rows as the number of multivariate functional observations in the
phase II data set and the following columns:

• one id column identifying the multivariate functional observation in the phase II data set,

• one T2 column containing the Hotelling T2 statistic calculated for all observations,

• one column per each functional variable, containing its contribution to the T2 statistic,

• one spe column containing the SPE statistic calculated for all observations,

• T2_lim gives the upper control limit of the Hotelling’s T2 control chart,

• spe_lim gives the upper control limit of the SPE control chart

RoMFDI 69

References

Capezza, C., Centofanti, F., Lepore, A., Palumbo, B. (2024) Robust Multivariate Functional Control
Charts. Technometrics, doi:10.1080/00401706.2024.2327346.

Examples

Not run:
library(funcharts)
mfdobj <- get_mfd_list(air, n_basis = 5)
nobs <- dim(mfdobj$coefs)[2]
set.seed(0)
ids <- sample(1:nobs)
mfdobj1 <- mfdobj[ids[1:100]]
mfdobj_tuning <- mfdobj[ids[101:300]]
mfdobj2 <- mfdobj[ids[-(1:300)]]
mod_phase1 <- RoMFCC_PhaseI(mfdobj = mfdobj1,

mfdobj_tuning = mfdobj_tuning)
phase2 <- RoMFCC_PhaseII(mfdobj_new = mfdobj2,

mod_phase1 = mod_phase1)
plot_control_charts(phase2)

End(Not run)

RoMFDI Robust Multivariate Functional Data Imputation (RoMFDI)

Description

It performs Robust Multivariate Functional Data Imputation (RoMFDI) as in Capezza et al. (2024).

Usage

RoMFDI(
mfdobj,
method_pca = "ROBPCA",
fev = 0.999,
n_dataset = 3,
update = TRUE,
niter_update = 10,
alpha = 0.8

)

Arguments

mfdobj A multivariate functional data object of class mfd.

method_pca The method used in rpca_mfd to perform robust multivariate functional princi-
pal component analysis (RoMFPCA). See rpca_mfd. Default is "ROBPCA".

doi:10.1080/00401706.2024.2327346

70 RoMFDI

fev Number between 0 and 1 denoting the proportion of variability that must be
explained by the principal components to be selected for dimension reduction
after applying RoMFPCA on the observed components to impute the missing
ones. Default is 0.999.

n_dataset To take into account the increased noise due to single imputation, the proposed
RoMFDI allows multiple imputation. Due to the presence of the stochastic com-
ponent in the imputation, it is worth explicitly noting that the imputed data set
is not deterministically assigned. Therefore, by performing several times the
RoMFDI in the imputation step of the RoMFCC implementation, the corre-
sponding multiple estimated RoMFPCA models could be combined by aver-
aging the robustly estimated covariance functions, thus performing a multiple
imputation strategy as suggested by Van Ginkel et al. (2007). Default is 3.

update The RoMFDI performs sequential imputation of missing functional components.
If TRUE, Robust Multivariate Functional Principal Component Analysis (RoMF-
PCA) niter_update is updated times during the algorithm. If FALSE, the
RoMFPCA used for imputation is always the same, i.e., the one performed on
the original data sets containing only the observations with no missing func-
tional components. Default is TRUE.

niter_update The number of times the RoMFPCA is updated during the algorithm. It applies
only if update is TRUE. Default value is 10.

alpha This parameter measures the fraction of outliers the RoMFPCA algorithm should
resist and is used only if method_pca is "ROBPCA". Default is 0.8.

Value

A list with n_dataset elements. Each element is an mfd object containing mfdobj with stochastic
imputation of the missing components.

References

Capezza, C., Centofanti, F., Lepore, A., Palumbo, B. (2024) Robust Multivariate Functional Control
Charts. Technometrics, doi:10.1080/00401706.2024.2327346.

Van Ginkel, J. R., Van der Ark, L. A., Sijtsma, K., and Vermunt, J. K. (2007). Two-way imputa-
tion: a bayesian method for estimating missing scores in tests and questionnaires, and an accurate
approximation. Computational Statistics & Data Analysis, 51(8):4013—4027.

Examples

Not run:
library(funcharts)
mfdobj <- get_mfd_list(air, grid = 1:24, n_basis = 13, lambda = 1e-2)
out <- functional_filter(mfdobj)
mfdobj_imp <- RoMFDI(out$mfdobj)

End(Not run)

doi:10.1080/00401706.2024.2327346

rpca_mfd 71

rpca_mfd Robust multivariate functional principal components analysis

Description

It performs robust MFPCA as described in Capezza et al. (2024).

Usage

rpca_mfd(
mfdobj,
center = "fusem",
scale = "funmad",
nharm = 20,
method = "ROBPCA",
alpha = 0.8

)

Arguments

mfdobj A multivariate functional data object of class mfd.

center If TRUE, it centers the data before doing MFPCA with respect to the functional
mean of the input data. If "fusem", it uses the functional M-estimator of location
proposed by Centofanti et al. (2023) to center the data. Default is "fusem".

scale If "funmad", it scales the data before doing MFPCA using the functional nor-
malized median absolute deviation estimator proposed by Centofanti et al. (2023).
If TRUE, it scales data using scale_mfd. Default is "funmad".

nharm Number of multivariate functional principal components to be calculated. De-
fault is 20.

method If "ROBPCA", MFPCA uses ROBPCA of Hubert et al. (2005), as described in
Capezza et al. (2024). If "Locantore", MFPCA uses the Spherical Princi-
pal Components procedure proposed by Locantore et al. (1999). If "Proj",
MFPCA uses the Robust Principal Components based on Projection Pursuit al-
gorithm of Croux and Ruiz-Gazen (2005). method If "normal", it uses pca_mfd
on mfdobj. Default is "ROBPCA".

alpha This parameter measures the fraction of outliers the algorithm should resist and
is used only if method is "ROBPCA". Default is 0.8.

Value

An object of pca_mfd class, as returned by the pca_mfd function when performing non robust
multivariate functional principal component analysis.

72 scale_mfd

References

Capezza, C., Centofanti, F., Lepore, A., Palumbo, B. (2024) Robust Multivariate Functional Control
Charts. Technometrics, doi:10.1080/00401706.2024.2327346.

Centofanti, F., Colosimo, B.M., Grasso, M.L., Menafoglio, A., Palumbo, B., Vantini, S. (2023) Ro-
bust functional ANOVA with application to additive manufacturing. Journal of the Royal Statistical
Society Series C: Applied Statistics 72(5), 1210–1234 doi:10.1093/jrsssc/qlad074

Croux, C., Ruiz-Gazen, A. (2005). High breakdown estimators for principal components: The
projection-pursuit approach revisited. Journal of Multivariate Analysis, 95, 206–226, doi:10.
1016/j.jmva.2004.08.002.

Hubert, M., Rousseeuw, P.J., Branden, K.V. (2005) ROBPCA: A New Approach to Robust Principal
Component Analysis, Technometrics 47(1), 64–79, doi:10.1198/004017004000000563

Locantore, N., Marron, J., Simpson, D., Tripoli, N., Zhang, J., Cohen K., K. (1999), Robust princi-
pal components for functional data. Test, 8, 1-28. doi:10.1007/BF02595862

Examples

library(funcharts)
dat <- simulate_mfd(nobs = 20, p = 1, correlation_type_x = "Bessel")
mfdobj <- get_mfd_list(dat$X_list, n_basis = 5)

contaminate first observation
mfdobj$coefs[, 1,] <- mfdobj$coefs[, 1,] + 0.05

plot_mfd(mfdobj) # plot functions to see the outlier
pca <- pca_mfd(mfdobj) # non robust MFPCA
rpca <- rpca_mfd(mfdobj) # robust MFPCA
plot_pca_mfd(pca, harm = 1) # plot first eigenfunction, affected by outlier
plot_pca_mfd(rpca, harm = 1) # plot first eigenfunction in robust case

scale_mfd Standardize Multivariate Functional Data.

Description

Scale multivariate functional data contained in an object of class mfd by subtracting the mean func-
tion and dividing by the standard deviation function.

Usage

scale_mfd(mfdobj, center = TRUE, scale = TRUE)

Arguments

mfdobj A multivariate functional data object of class mfd.

doi:10.1080/00401706.2024.2327346
doi:10.1093/jrsssc/qlad074
doi:10.1016/j.jmva.2004.08.002
doi:10.1016/j.jmva.2004.08.002
doi:10.1198/004017004000000563
doi:10.1007/BF02595862

simulate_mfd 73

center A logical value, or a fd object. When providing a logical value, if TRUE,
mfdobj is centered, i.e. the functional mean function is calculated and sub-
tracted from all observations in mfdobj, if FALSE, mfdobj is not centered. If
center is a fd object, then this function is used as functional mean for centering.

scale A logical value, or a fd object. When providing a logical value, if TRUE,
mfdobj is scaled after possible centering, i.e. the functional standard deviation
is calculated from all functional observations in mfdobj and then the observa-
tions are divided by this calculated standard deviation, if FALSE, mfdobj is not
scaled. If scale is a fd object, then this function is used as standard deviation
function for scaling.

Details

This function has been written to work similarly as the function scale for matrices. When calcu-
lated, attributes center and scale are of class fd and have the same structure you get when you
use fda::mean.fd and fda::sd.fd.

Value

A standardized object of class mfd, with two attributes, if calculated, center and scale, storing the
mean and standard deviation functions used for standardization.

Examples

library(funcharts)
mfdobj <- data_sim_mfd()
mfdobj_scaled <- scale_mfd(mfdobj)

simulate_mfd Simulate a data set for funcharts

Description

Function used to simulate a data set to illustrate the use of funcharts. By default, it creates a
data set with three functional covariates, a functional response generated as a function of the three
functional covariates through a function-on-function linear model, and a scalar response generated
as a function of the three functional covariates through a scalar-on-function linear model. This
function covers the simulation study in Centofanti et al. (2021) for the function-on-function case
and also simulates data in a similar way for the scalar response case. It is possible to select the
number of functional covariates, the correlation function type for each functional covariate and the
functional response, moreover it is possible to provide manually the mean and variance functions
for both functional covariates and the response. In the default case, the function generates in-control
data. Additional arguments can be used to generate additional data that are out of control, with mean
shifts according to the scenarios proposed by Centofanti et al. (2021). Each simulated observation
of a functional variable consists of a vector of discrete points equally spaced between 0 and 1 (by
default 150 points), generated with noise.

74 simulate_mfd

Usage

simulate_mfd(
nobs = 1000,
p = 3,
R2 = 0.97,
shift_type_y = "0",
shift_type_x = c("0", "0", "0"),
correlation_type_y = "Bessel",
correlation_type_x = c("Bessel", "Gaussian", "Exponential"),
d_y = 0,
d_y_scalar = 0,
d_x = c(0, 0, 0),
n_comp_y = 10,
n_comp_x = 50,
P = 500,
ngrid = 150,
save_beta = FALSE,
mean_y = NULL,
mean_x = NULL,
variance_y = NULL,
variance_x = NULL,
sd_y = 0.3,
sd_x = c(0.3, 0.05, 0.3),
seed

)

Arguments

nobs The number of observation to simulate

p The number of functional covariates to simulate. Default value is 3.

R2 The desired coefficient of determination in the regression in both the scalar and
functional response cases, Default is 0.97.

shift_type_y The shift type for the functional response. There are five possibilities: "0" if
there is no shift, "A", "B", "C" or "D" for the corresponding shift types shown
in Centofanti et al. (2021). Default is "0".

shift_type_x A list of length p, indicating, for each functional covariate, the shift type. For
each element of the list, there are five possibilities: "0" if there is no shift, "A",
"B", "C" or "D" for the corresponding shift types shown in Centofanti et al.
(2021). By default, shift is not applied to any functional covariate.

correlation_type_y

A character vector indicating the type of correlation function for the functional
response. See Centofanti et al. (2021) for more details. Three possible values are
available, namely "Bessel", "Gaussian" and "Exponential". Default value
is "Bessel".

correlation_type_x

A list of p character vectors indicating the type of correlation function for each
functional covariate. See Centofanti et al. (2021) for more details. For each ele-

simulate_mfd 75

ment of the list, three possible values are available, namely "Bessel", "Gaussian"
and "Exponential". Default value is c("Bessel", "Gaussian", "Exponential").

d_y A number indicating the severity of the shift type for the functional response.
Default is 0.

d_y_scalar A number indicating the severity of the shift type for the scalar response. Default
is 0.

d_x A list of p numbers, each indicating the severity of the shift type for the cor-
responding functional covariate. By default, the severity is set to zero for all
functional covariates.

n_comp_y A positive integer number indicating how many principal components obtained
after the eigendecomposiiton of the covariance function of the functional re-
sponse variable to retain. Default value is 10.

n_comp_x A positive integer number indicating how many principal components obtained
after the eigendecomposiiton of the covariance function of the multivariate func-
tional covariates variable to retain. Default value is 50.

P A positive integer number indicating the number of equally spaced grid points
over which the covariance functions are discretized. Default value is 500.

ngrid A positive integer number indicating the number of equally spaced grid points
between zero and one over which all functional observations are discretized be-
fore adding noise. Default value is 150.

save_beta If TRUE, the true regression coefficients of both the function-on-function and
the scalar-on-function models are saved. Default is FALSE.

mean_y The mean function of the functional response can be set manually through this
argument. If not NULL, it must be a vector of length equal to ngrid, provid-
ing the values of the mean function of the functional response discretized on
seq(0,1,l=ngrid). If NULL, the mean function is generated as done in the
simulation study of Centofanti et al. (2021). Default is NULL.

mean_x The mean function of the functional covariates can be set manually through this
argument. If not NULL, it must be a list of vectors, each with length equal to
ngrid, providing the values of the mean function of each functional covariate
discretized on seq(0,1,l=ngrid). If NULL, the mean function is generated as
done in the simulation study of Centofanti et al. (2021). Default is NULL.

variance_y The variance function of the functional response can be set manually through
this argument. If not NULL, it must be a vector of length equal to ngrid, pro-
viding the values of the variance function of the functional response discretized
on seq(0,1,l=ngrid). If NULL, the variance function is generated as done in
the simulation study of Centofanti et al. (2021). Default is NULL.

variance_x The variance function of the functional covariates can be set manually through
this argument. If not NULL, it must be a list of vectors, each with length equal to
ngrid, providing the values of the variance function of each functional covariate
discretized on seq(0,1,l=ngrid). If NULL, the variance function is generated
as done in the simulation study of Centofanti et al. (2021). Default is NULL.

sd_y A positive number indicating the standard deviation of the generated noise with
which the functional response discretized values are observed. Default value is
0.3

76 sim_funcharts

sd_x A vector of p positive numbers indicating the standard deviation of the gener-
ated noise with which the functional covariates discretized values are observed.
Default value is c(0.3, 0.05, 0.3).

seed Deprecated: use set.seed() before calling the function for reproducibility.

Value

A list with the following elements:

• X_list is a list of p matrices, each with dimension nobsxngrid, containing the simulated
observations of the multivariate functional covariate

• Y is a nobsxngrid matrix with the simulated observations of the functional response

• y_scalar is a vector of length nobs with the simulated observations of the scalar response

• beta_fof, if save_beta = TRUE, is a list of p matrices, each with dimension PxP with the
discretized functional coefficients of the function-on-function regression

• beta_sof, if save_beta = TRUE, is a list of p vectors, each with length P, with the discretized
functional coefficients of the scalar-on-function regression

References

Centofanti F, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2021) Functional Regression Control
Chart. Technometrics, 63(3), 281–294. doi:10.1080/00401706.2020.1753581

sim_funcharts Simulate example data for funcharts

Description

Function used to simulate three data sets to illustrate the use of funcharts. It uses the function
simulate_mfd, which creates a data set with three functional covariates, a functional response
generated as a function of the three functional covariates, and a scalar response generated as a
function of the three functional covariates. This function generates three data sets, one for phase I,
one for tuning, i.e., to estimate the control chart limits, and one for phase II monitoring. see also
simulate_mfd.

Usage

sim_funcharts(nobs1 = 1000, nobs_tun = 1000, nobs2 = 60)

Arguments

nobs1 The number of observation to simulate in phase I. Default is 1000.

nobs_tun The number of observation to simulate the tuning data set. Default is 1000.

nobs2 The number of observation to simulate in phase II. Default is 60.

doi:10.1080/00401706.2020.1753581

sof_pc 77

Value

A list with three objects, datI contains the phase I data, datI_tun contains the tuning data, datII
contains the phase II data. In the phase II data, the first group of observations are in control, the
second group of observations contains a moderate mean shift, while the third group of observations
contains a severe mean shift. The shift types are described in the paper from Capezza et al. (2023).

References

Centofanti F, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2021) Functional Regression Control
Chart. Technometrics, 63(3), 281–294. doi:10.1080/00401706.2020.1753581

Capezza, C., Centofanti, F., Lepore, A., Menafoglio, A., Palumbo, B., & Vantini, S. (2023). fun-
charts: Control charts for multivariate functional data in R. Journal of Quality Technology, 55(5),
566–583. doi:10.1080/00224065.2023.2219012

sof_pc Scalar-on-function linear regression based on principal components

Description

Scalar-on-function linear regression based on principal components. This function performs multi-
variate functional principal component analysis (MFPCA) to extract multivariate functional princi-
pal components from the multivariate functional covariates, then it builds a linear regression model
of a scalar response variable on the covariate scores. Functional covariates are standardized before
the regression. See Capezza et al. (2020) for additional details.

Usage

sof_pc(
y,
mfdobj_x,
tot_variance_explained = 0.9,
selection = "variance",
single_min_variance_explained = 0,
components = NULL

)

Arguments

y A numeric vector containing the observations of the scalar response variable.

mfdobj_x A multivariate functional data object of class mfd denoting the functional co-
variates.

tot_variance_explained

The minimum fraction of variance that has to be explained by the set of multi-
variate functional principal components retained into the MFPCA model fitted
on the functional covariates. Default is 0.9.

doi:10.1080/00401706.2020.1753581
doi:10.1080/00224065.2023.2219012

78 sof_pc

selection A character value with one of three possible values:
if "variance", the first M multivariate functional principal components are re-
tained into the MFPCA model such that together they explain a fraction of vari-
ance greater than tot_variance_explained,
if "PRESS", each j-th functional principal component is retained into the MF-
PCA model if, by adding it to the set of the first j-1 functional principal com-
ponents, then the predicted residual error sum of squares (PRESS) statistic de-
creases, and at the same time the fraction of variance explained by that single
component is greater than single_min_variance_explained. This criterion is
used in Capezza et al. (2020).
if "gcv", the criterion is equal as in the previous "PRESS" case, but the "PRESS"
statistic is substituted by the generalized cross-validation (GCV) score.
Default value is "variance".

single_min_variance_explained

The minimum fraction of variance that has to be explained by each multivariate
functional principal component into the MFPCA model fitted on the functional
covariates such that it is retained into the MFPCA model. Default is 0.

components A vector of integers with the components over which to project the functional
covariates. If this is not NULL, the criteria to select components are ignored. If
NULL, components are selected according to the criterion defined by selection.
Default is NULL.

Value

a list containing the following arguments:

• mod: an object of class lm that is a linear regression model where the scalar response variable
is y and the covariates are the MFPCA scores of the functional covariates,

• mod$coefficients contains the matrix of coefficients of the functional regression basis func-
tions,

• pca: an object of class pca_mfd obtained by doing MFPCA on the functional covariates,
• beta_fd: an object of class mfd object containing the functional regression coefficient β(t)

estimated with the scalar-on-function linear regression model,
• components: a vector of integers with the components selected in the pca model,
• selection: the same as the provided argument
• single_min_variance_explained: the same as the provided argument
• tot_variance_explained: the same as the provided argument
• gcv: a vector whose j-th element is the GCV score obtained when retaining the first j compo-

nents in the MFPCA model.
• PRESS: a vector whose j-th element is the PRESS statistic obtained when retaining the first j

components in the MFPCA model.

References

Capezza C, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2020) Control charts for monitor-
ing ship operating conditions and CO2 emissions based on scalar-on-function regression. Applied
Stochastic Models in Business and Industry, 36(3):477–500. doi:10.1002/asmb.2507

doi:10.1002/asmb.2507

sof_pc_real_time 79

Examples

library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:10, , drop = FALSE])
fun_covariates <- c("CO", "temperature")
mfdobj_x <- get_mfd_list(air[fun_covariates], lambda = 1e-2)
y <- rowMeans(air$NO2)
mod <- sof_pc(y, mfdobj_x)

sof_pc_real_time Get a list of scalar-on-function linear regression models estimated on
functional data each evolving up to an intermediate domain point.

Description

This function produces a list of objects, each of them contains the result of applying sof_pc to a
scalar response variable and multivariate functional covariates evolved up to an intermediate domain
point. See Capezza et al. (2020) for additional details on real-time monitoring.

Usage

sof_pc_real_time(
y,
mfd_real_time_list,
single_min_variance_explained = 0,
tot_variance_explained = 0.9,
selection = "PRESS",
components = NULL,
ncores = 1

)

Arguments

y A numeric vector containing the observations of the scalar response variable.
mfd_real_time_list

A list created using get_mfd_df_real_time or get_mfd_list_real_time, de-
noting a list of functional data objects, each evolving up to an intermediate do-
main point, with observations of the multivariate functional covariates.

single_min_variance_explained

See sof_pc.
tot_variance_explained

See sof_pc.
selection See sof_pc.
components See sof_pc.
ncores If you want parallelization, give the number of cores/threads to be used when

creating objects separately for different instants.

80 tensor_product_mfd

Value

A list of lists each produced by sof_pc, corresponding to a given instant.

References

Capezza C, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2020) Control charts for monitor-
ing ship operating conditions and CO2 emissions based on scalar-on-function regression. Applied
Stochastic Models in Business and Industry, 36(3):477–500. doi:10.1002/asmb.2507

See Also

sof_pc, get_mfd_df_real_time, get_mfd_list_real_time

Examples

library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:10, , drop = FALSE])
mfdobj_list <- get_mfd_list_real_time(air[c("CO", "temperature")],

n_basis = 15,
lambda = 1e-2,
k_seq = c(0.5, 0.75, 1))

y <- rowMeans(air$NO2)
mod_list <- sof_pc_real_time(y, mfdobj_list)

tensor_product_mfd Tensor product of two Multivariate Functional Data objects

Description

This function returns the tensor product of two Multivariate Functional Data objects. Each object
must contain only one replication.

Usage

tensor_product_mfd(mfdobj1, mfdobj2 = NULL)

Arguments

mfdobj1 A multivariate functional data object, of class mfd, having only one functional
observation.

mfdobj2 A multivariate functional data object, of class mfd, having only one functional
observation. If NULL, it is set equal to mfdobj1. Default is NULL.

doi:10.1002/asmb.2507

which_ooc 81

Value

An object of class bifd. If we denote with x(s)=(x_1(s),. . . ,x_p(s)) the vector of p functions rep-
resented by mfdobj1 and with y(t)=(y_1(t),. . . ,y_q(t)) the vector of q functions represented by
mfdobj2, the output is the vector of pq bivariate functions

f(s,t)=(x_1(s)y_1(t),. . . ,x_1(s)y_q(t), . . . ,x_p(s)y_1(t),. . . ,x_p(s)y_q(t)).

Examples

library(funcharts)
mfdobj1 <- data_sim_mfd(nobs = 1, nvar = 3)
mfdobj2 <- data_sim_mfd(nobs = 1, nvar = 2)
tensor_product_mfd(mfdobj1)
tensor_product_mfd(mfdobj1, mfdobj2)

which_ooc Get the index of the out of control observations from control charts

Description

This function returns a list for each control chart and returns the id of all observations that are out
of control in that control chart.

Usage

which_ooc(cclist)

Arguments

cclist A data.frame produced by control_charts_sof_pc.

Value

A list of as many data.frame objects as the control charts in cclist. Each data frame has two
columns, the n contains an index number giving the observation in the phase II data set, i.e. 1
for the first observation, 2 for the second, and so on, while the id column contains the id of the
observation, which can be general and depends on the specific data set.

Examples

library(funcharts)
data("air")
air <- lapply(air, function(x) x[201:300, , drop = FALSE])
fun_covariates <- c("CO", "temperature")
mfdobj_x <- get_mfd_list(air[fun_covariates],

n_basis = 15,
lambda = 1e-2)

y <- rowMeans(air$NO2)

82 [.mfd

y1 <- y[1:60]
y_tuning <- y[61:90]
y2 <- y[91:100]
mfdobj_x1 <- mfdobj_x[1:60]
mfdobj_x_tuning <- mfdobj_x[61:90]
mfdobj_x2 <- mfdobj_x[91:100]
mod <- sof_pc(y1, mfdobj_x1)
cclist <- regr_cc_sof(object = mod,

y_new = y2,
mfdobj_x_new = mfdobj_x2,
y_tuning = y_tuning,
mfdobj_x_tuning = mfdobj_x_tuning,
include_covariates = TRUE)

which_ooc(cclist)

[.mfd Extract observations and/or variables from mfd objects.

Description

Extract observations and/or variables from mfd objects.

Usage

S3 method for class 'mfd'
mfdobj[i = TRUE, j = TRUE]

Arguments

mfdobj An object of class mfd.

i Index specifying functional observations to extract or replace. They can be nu-
meric, character, or logical vectors or empty (missing) or NULL. Numeric val-
ues are coerced to integer as by as.integer (and hence truncated towards zero).
The can also be negative integers, indicating functional observations to leave out
of the selection. Logical vectors indicate TRUE for the observations to select.
Character vectors will be matched to the argument fdnames[[2]] of mfdobj,
i.e. to functional observations’ names.

j Index specifying functional variables to extract or replace. They can be numeric,
logical, or character vectors or empty (missing) or NULL. Numeric values are
coerced to integer as by as.integer (and hence truncated towards zero). The can
also be negative integers, indicating functional variables to leave out of the se-
lection. Logical vectors indicate TRUE for the variables to select. Character
vectors will be matched to the argument fdnames[[3]] of mfdobj, i.e. to func-
tional variables’ names.

[.mfd 83

Details

This function adapts the fda::"[.fd" function to be more robust and suitable for the mfd class.
In fact, whatever the number of observations or variables you want to extract, it always returns a
mfd object with a three-dimensional coef array. In other words, it behaves as you would always
use the argument drop=FALSE. Moreover, you can extract observations and variables both by index
numbers and by names, as you would normally do when using `[` with standard vector/matrices.

Value

a mfd object with selected observations and variables.

Examples

library(funcharts)
library(fda)

In the following, we extract the first one/two observations/variables
to see the difference with `[.fd`.
mfdobj <- data_sim_mfd()
fdobj <- fd(mfdobj$coefs, mfdobj$basis, mfdobj$fdnames)

The argument `coef` in `fd`
objects is converted to a matrix when possible.
dim(fdobj[1, 1]$coef)
Not clear what is the second dimension:
the number of replications or the number of variables?
dim(fdobj[1, 1:2]$coef)
dim(fdobj[1:2, 1]$coef)

The argument `coef` in `mfd` objects is always a three-dimensional array.
dim(mfdobj[1, 1]$coef)
dim(mfdobj[1, 1:2]$coef)
dim(mfdobj[1:2, 1]$coef)

Actually, `[.mfd` works as `[.fd` when passing also `drop = FALSE`
dim(fdobj[1, 1, drop = FALSE]$coef)
dim(fdobj[1, 1:2, drop = FALSE]$coef)
dim(fdobj[1:2, 1, drop = FALSE]$coef)

Index

∗ datasets
air, 3

[.mfd, 82

air, 3
AMFEWMA_PhaseI, 4, 7
AMFEWMA_PhaseII, 7

cbind_mfd, 9
cont_plot, 19
control_charts_pca, 10, 13, 14, 16, 19, 37,

49, 53, 58, 59, 63
control_charts_pca_mfd_real_time, 12
control_charts_sof_pc, 14, 17–19, 37, 49,

53, 81
control_charts_sof_pc_real_time, 17, 50

data_sim_mfd, 20

fd, 43
fof_pc, 21, 23, 24
fof_pc_real_time, 23, 60, 61
functional_filter, 25, 67

geom_line, 52
get_mfd_array, 26, 28, 29, 35
get_mfd_array_real_time, 28
get_mfd_df, 27, 29, 31, 32, 36
get_mfd_df_real_time, 13, 18, 24, 31, 46,

60, 65, 79, 80
get_mfd_fd, 33
get_mfd_list, 27, 31, 34, 35, 36
get_mfd_list_real_time, 24, 35, 80
get_ooc, 37
get_outliers_mfd, 38
get_sof_pc_outliers, 39

inprod_mfd, 40
inprod_mfd_diag, 41
is.mfd, 41

lines_mfd, 42

mean.fd, 73
mfd, 35, 43

norm.mfd, 45

pca.fd, 45, 46
pca_mfd, 13, 45, 46, 47
pca_mfd_real_time, 13, 14, 46
plot_bifd, 47
plot_bootstrap_sof_pc, 48
plot_control_charts, 49
plot_control_charts_real_time, 50
plot_mfd, 42, 43, 51
plot_mon, 52
plot_pca_mfd, 54
predict_fof_pc, 54
predict_sof_pc, 55

rbind_mfd, 57
regr_cc_fof, 12, 19, 37, 49, 53, 57, 59, 61
regr_cc_fof_real_time, 50, 59
regr_cc_sof, 15, 16, 19, 37, 49, 53, 62, 62,

64, 65
regr_cc_sof_real_time, 17, 64
RoMFCC_PhaseI, 66, 68
RoMFCC_PhaseII, 68
RoMFDI, 67, 69
rpca_mfd, 25, 67, 69, 71

scale, 73
scale_mfd, 46, 72
sd.fd, 73
sim_funcharts, 76
simulate_mfd, 73, 76
sof_pc, 48, 77, 79, 80
sof_pc_real_time, 18, 64, 65, 79

tensor_product_mfd, 80

which_ooc, 81

84

	air
	AMFEWMA_PhaseI
	AMFEWMA_PhaseII
	cbind_mfd
	control_charts_pca
	control_charts_pca_mfd_real_time
	control_charts_sof_pc
	control_charts_sof_pc_real_time
	cont_plot
	data_sim_mfd
	fof_pc
	fof_pc_real_time
	functional_filter
	get_mfd_array
	get_mfd_array_real_time
	get_mfd_df
	get_mfd_df_real_time
	get_mfd_fd
	get_mfd_list
	get_mfd_list_real_time
	get_ooc
	get_outliers_mfd
	get_sof_pc_outliers
	inprod_mfd
	inprod_mfd_diag
	is.mfd
	lines_mfd
	mfd
	norm.mfd
	pca_mfd
	pca_mfd_real_time
	plot_bifd
	plot_bootstrap_sof_pc
	plot_control_charts
	plot_control_charts_real_time
	plot_mfd
	plot_mon
	plot_pca_mfd
	predict_fof_pc
	predict_sof_pc
	rbind_mfd
	regr_cc_fof
	regr_cc_fof_real_time
	regr_cc_sof
	regr_cc_sof_real_time
	RoMFCC_PhaseI
	RoMFCC_PhaseII
	RoMFDI
	rpca_mfd
	scale_mfd
	simulate_mfd
	sim_funcharts
	sof_pc
	sof_pc_real_time
	tensor_product_mfd
	which_ooc
	[.mfd
	Index

